The problem of column subset selection asks for a subset of columns from an input matrix such that the matrix can be reconstructed as accurately as possible within the span of the selected columns. A natural extension is to consider a setting where the matrix rows are partitioned into two groups, and the goal is to choose a subset of columns that minimizes the maximum reconstruction error of both groups, relative to their respective best rank-k approximation. Extending the known results of column subset selection to this fair setting is not straightforward: in certain scenarios it is unavoidable to choose columns separately for each group, resulting in double the expected column count. We propose a deterministic leverage-score sampling strategy for the fair setting and show that sampling a column subset of minimum size becomes NP-hard in the presence of two groups. Despite these negative results, we give an approximation algorithm that guarantees a solution within 1.5 times the optimal solution size. We also present practical heuristic algorithms based on rank-revealing QR factorization. Finally, we validate our methods through an extensive set of experiments using real-world data.
Flow Matching (FM) is a simulation-free method for learning a continuous and invertible flow to interpolate between two distributions, and in particular to generate data from noise in generative modeling. In this paper, we introduce Local Flow Matching (LFM), which learns a sequence of FM sub-models and each matches a diffusion process up to the time of the step size in the data-to-noise direction. In each step, the two distributions to be interpolated by the sub-model are closer to each other than data vs. noise, and this enables the use of smaller models with faster training. The stepwise structure of LFM is natural to be distilled and different distillation techniques can be adopted to speed up generation. Theoretically, we prove a generation guarantee of the proposed flow model in terms of the $\chi^2$-divergence between the generated and true data distributions. In experiments, we demonstrate the improved training efficiency and competitive generative performance of LFM compared to FM on the unconditional generation of tabular data and image datasets, and also on the conditional generation of robotic manipulation policies.
Neural Processes (NPs) are deep probabilistic models that represent stochastic processes by conditioning their prior distributions on a set of context points. Despite their obvious advantages in uncertainty estimation for complex distributions, NPs enforce parameterization coupling between the conditional prior model and the posterior model, thereby risking introducing a misspecified prior distribution. We hereby revisit the NP objectives and propose R\'enyi Neural Processes (RNP) to ameliorate the impacts of prior misspecification by optimizing an alternative posterior that achieves better marginal likelihood. More specifically, by replacing the standard KL divergence with the R\'enyi divergence between the model posterior and the true posterior, we scale the density ratio $\frac{p}{q}$ by the power of (1-$\alpha$) in the divergence gradients with respect to the posterior. This hyper parameter $\alpha$ allows us to dampen the effects of the misspecified prior for the posterior update, which has been shown to effectively avoid oversmoothed predictions and improve the expressiveness of the posterior model. Our extensive experiments show consistent log-likelihood improvements over state-of-the-art NP family models which adopt both the variational inference or maximum likelihood estimation objectives. We validate the effectiveness of our approach across multiple benchmarks including regression and image inpainting tasks, and show significant performance improvements of RNPs in real-world regression problems where the underlying prior model is misspecifed.
Semiring semantics of first-order logic generalises classical Boolean semantics by permitting truth values from a commutative semiring, which can model information such as costs or access restrictions. This raises the question to what extent classical model theoretic properties still apply, and how this depends on the algebraic properties of the semiring. In this paper, we study this question for the classical locality theorems due to Hanf and Gaifman. We prove that Hanf's Locality Theorem generalises to all semirings with idempotent operations, but fails for many non-idempotent semirings. We then consider Gaifman normal forms and show that for formulae with free variables, Gaifman's Theorem does not generalise beyond the Boolean semiring. Also for sentences, it fails in the natural semiring and the tropical semiring. Our main result, however, is a constructive proof of the existence of Gaifman normal forms for min-max and lattice semirings. The proof implies a stronger version of Gaifman's classical theorem in Boolean semantics: every sentence has a Gaifman normal form which does not add negations.
Herein the topics of (natural) gradient descent, data decorrelation, and approximate methods for backpropagation are brought into a common discussion. Natural gradient descent illuminates how gradient vectors, pointing at directions of steepest descent, can be improved by considering the local curvature of loss landscapes. We extend this perspective and show that to fully solve the problem illuminated by natural gradients in neural networks, one must recognise that correlations in the data at any linear transformation, including node responses at every layer of a neural network, cause a non-orthonormal relationship between the model's parameters. To solve this requires a method for decorrelating inputs at each individual layer of a neural network. We describe a range of methods which have been proposed for decorrelation and whitening of node output, and expand on these to provide a novel method specifically useful for distributed computing and computational neuroscience. Implementing decorrelation within multi-layer neural networks, we can show that not only is training via backpropagation sped up significantly but also existing approximations of backpropagation, which have failed catastrophically in the past, benefit significantly in their accuracy and convergence speed. This has the potential to provide a route forward for approximate gradient descent methods which have previously been discarded, training approaches for analogue and neuromorphic hardware, and potentially insights as to the efficacy and utility of decorrelation processes in the brain.
Statistical Taylor expansion replaces the input precise variables in a conventional Taylor expansion with random variables each with known mean and deviation, to calculate the result mean and deviation. It is based on the uncorrelated uncertainty assumption: Each input variable is measured independently with fine enough statistical precision, so that their uncertainties are independent of each other. Statistical Taylor expansion reviews that the intermediate analytic expressions can no longer be regarded as independent of each other, and the result of analytic expression should be path independent. This conclusion differs fundamentally from the conventional common approach in applied mathematics to find the best execution path for a result. This paper also presents an implementation of statistical Taylor expansion called variance arithmetic, and the tests on variance arithmetic.
We prove that the constructive and intuitionistic variants of the modal logic $\mathsf{KB}$ coincide. This result contrasts with a recent result by Das and Marin, who showed that the constructive and intuitionistic variants of $\mathsf{K}$ do not prove the same diamond-free formulas.
In the logic programming paradigm, a program is defined by a set of methods, each of which can be executed when specific conditions are met during the current state of an execution. The semantics of these programs can be elegantly represented using sequent calculi, in which each method is linked to an inference rule. In this context, proof search mirrors the program's execution. Previous works introduced a framework in which the process of constructing proof nets is employed to model executions, as opposed to the traditional approach of proof search in sequent calculus. This paper further extends this investigation by focussing on the pure multiplicative fragment of this framework. We demonstrate, providing practical examples, the capability to define logic programming methods with context-sensitive behaviors solely through specific resource-preserving and context-free operations, corresponding to certain generalized multiplicative connectives explored in existing literature. We show how some of these methods, although still multiplicative, escape the purely multiplicative fragment of Linear Logic (MLL).
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.