Compared to traditional Artificial Neural Network (ANN), Spiking Neural Network (SNN) has garnered widespread academic interest for its intrinsic ability to transmit information in a more biological-inspired and energy-efficient manner. However, despite previous efforts to optimize the learning gradients and model structure of SNNs through various methods, SNNs still lag behind ANNs in terms of performance to some extent. The recently proposed multi-threshold model provides more possibilities for further enhancing the learning capability of SNNs. In this paper, we rigorously analyze the relationship among the multi-threshold model, vanilla spiking model and quantized ANNs from a mathematical perspective, then propose a novel LM-HT model, which is an equidistant multi-hierarchical model that can dynamically regulate the global input current and membrane potential leakage on the time dimension. In addition, we note that the direct training algorithm based on the LM-HT model can seamlessly integrate with the traditional ANN-SNN Conversion framework. This novel hybrid learning framework can effectively improve the relatively poor performance of converted SNNs under low time latency. Extensive experimental results have demonstrated that our LM-HT model can significantly outperform previous state-of-the-art works on various types of datasets, which promote SNNs to achieve a brand-new level of performance comparable to quantized ANNs.
The generalization of monocular metric depth estimation (MMDE) has been a longstanding challenge. Recent methods made progress by combining relative and metric depth or aligning input image focal length. However, they are still beset by challenges in camera, scene, and data levels: (1) Sensitivity to different cameras; (2) Inconsistent accuracy across scenes; (3) Reliance on massive training data. This paper proposes SM4Depth, a seamless MMDE method, to address all the issues above within a single network. First, we reveal that a consistent field of view (FOV) is the key to resolve ``metric ambiguity'' across cameras, which guides us to propose a more straightforward preprocessing unit. Second, to achieve consistently high accuracy across scenes, we explicitly model the metric scale determination as discretizing the depth interval into bins and propose variation-based unnormalized depth bins. This method bridges the depth gap of diverse scenes by reducing the ambiguity of the conventional metric bin. Third, to reduce the reliance on massive training data, we propose a ``divide and conquer" solution. Instead of estimating directly from the vast solution space, the correct metric bins are estimated from multiple solution sub-spaces for complexity reduction. Finally, with just 150K RGB-D pairs and a consumer-grade GPU for training, SM4Depth achieves state-of-the-art performance on most previously unseen datasets, especially surpassing ZoeDepth and Metric3D on mRI$_\theta$. The code can be found at //github.com/1hao-Liu/SM4Depth.
One of the ways Large Language Models (LLMs) are used to perform machine learning tasks is to provide them with a few examples before asking them to produce a prediction. This is a meta-learning process known as few-shot learning. In this paper, we use available Search-Based methods to optimise the number and combination of examples that can improve an LLM's estimation performance, when it is used to estimate story points for new agile tasks. Our preliminary results show that our SBSE technique improves the estimation performance of the LLM by 59.34% on average (in terms of mean absolute error of the estimation) over three datasets against a zero-shot setting.
We investigate efficient methods for training Large Language Models (LLMs) to possess capabilities in multiple specialized domains, such as coding, math reasoning and world knowledge. Our method, named Branch-Train-MiX (BTX), starts from a seed model, which is branched to train experts in embarrassingly parallel fashion with high throughput and reduced communication cost. After individual experts are asynchronously trained, BTX brings together their feedforward parameters as experts in Mixture-of-Expert (MoE) layers and averages the remaining parameters, followed by an MoE-finetuning stage to learn token-level routing. BTX generalizes two special cases, the Branch-Train-Merge method, which does not have the MoE finetuning stage to learn routing, and sparse upcycling, which omits the stage of training experts asynchronously. Compared to alternative approaches, BTX achieves the best accuracy-efficiency tradeoff.
Knowledge tracing (KT) plays a crucial role in predicting students' future performance by analyzing their historical learning processes. Deep neural networks (DNNs) have shown great potential in solving the KT problem. However, there still exist some important challenges when applying deep learning techniques to model the KT process. The first challenge lies in taking the individual information of the question into modeling. This is crucial because, despite questions sharing the same knowledge component (KC), students' knowledge acquisition on homogeneous questions can vary significantly. The second challenge lies in interpreting the prediction results from existing deep learning-based KT models. In real-world applications, while it may not be necessary to have complete transparency and interpretability of the model parameters, it is crucial to present the model's prediction results in a manner that teachers find interpretable. This makes teachers accept the rationale behind the prediction results and utilize them to design teaching activities and tailored learning strategies for students. However, the inherent black-box nature of deep learning techniques often poses a hurdle for teachers to fully embrace the model's prediction results. To address these challenges, we propose a Question-centric Multi-experts Contrastive Learning framework for KT called Q-MCKT.
In this paper, we study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs) to specify the reward functions such that the prior knowledge of high-level events in a task can be leveraged to facilitate the learning efficiency. Unlike the existing work that RMs have been incorporated into MARL for task decomposition and policy learning in relatively simple domains or with an assumption of independencies among the agents, we present Multi-Agent Reinforcement Learning with a Hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios when the events among agents can occur concurrently and the agents are highly interdependent. MAHRM exploits the relationship of high-level events to decompose a task into a hierarchy of simpler subtasks that are assigned to a small group of agents, so as to reduce the overall computational complexity. Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.