亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of symmetric matrix completion, where the goal is to reconstruct a positive semidefinite matrix $\rm{X}^\star \in \mathbb{R}^{d\times d}$ of rank-$r$, parameterized by $\rm{U}\rm{U}^{\top}$, from only a subset of its observed entries. We show that the vanilla gradient descent (GD) with small initialization provably converges to the ground truth $\rm{X}^\star$ without requiring any explicit regularization. This convergence result holds true even in the over-parameterized scenario, where the true rank $r$ is unknown and conservatively over-estimated by a search rank $r'\gg r$. The existing results for this problem either require explicit regularization, a sufficiently accurate initial point, or exact knowledge of the true rank $r$. In the over-parameterized regime where $r'\geq r$, we show that, with $\widetilde\Omega(dr^9)$ observations, GD with an initial point $\|\rm{U}_0\| \leq \epsilon$ converges near-linearly to an $\epsilon$-neighborhood of $\rm{X}^\star$. Consequently, smaller initial points result in increasingly accurate solutions. Surprisingly, neither the convergence rate nor the final accuracy depends on the over-parameterized search rank $r'$, and they are only governed by the true rank $r$. In the exactly-parameterized regime where $r'=r$, we further enhance this result by proving that GD converges at a faster rate to achieve an arbitrarily small accuracy $\epsilon>0$, provided the initial point satisfies $\|\rm{U}_0\| = O(1/d)$. At the crux of our method lies a novel weakly-coupled leave-one-out analysis, which allows us to establish the global convergence of GD, extending beyond what was previously possible using the classical leave-one-out analysis.

相關內容

Let $\Gamma$ be a finite set of Jordan curves in the plane. For any curve $\gamma \in \Gamma$, we denote the bounded region enclosed by $\gamma$ as $\tilde{\gamma}$. We say that $\Gamma$ is a non-piercing family if for any two curves $\alpha , \beta \in \Gamma$, $\tilde{\alpha} \setminus \tilde{\beta}$ is a connected region. A non-piercing family of curves generalizes a family of $2$-intersecting curves in which each pair of curves intersect in at most two points. Snoeyink and Hershberger (``Sweeping Arrangements of Curves'', SoCG '89) proved that if we are given a family $\mathcal{C}$ of $2$-intersecting curves and a fixed curve $C\in\mathcal{C}$, then the arrangement can be \emph{swept} by $C$, i.e., $C$ can be continuously shrunk to any point $p \in \tilde{C}$ in such a way that the we have a family of $2$-intersecting curves throughout the process. In this paper, we generalize the result of Snoeyink and Hershberger to the setting of non-piercing curves. We show that given an arrangement of non-piercing curves $\Gamma$, and a fixed curve $\gamma\in \Gamma$, the arrangement can be swept by $\gamma$ so that the arrangement remains non-piercing throughout the process. We also give a shorter and simpler proof of the result of Snoeyink and Hershberger and cite applications of their result, where our result leads to a generalization.

We develop three new methods to implement any Linear Combination of Unitaries (LCU), a powerful quantum algorithmic tool with diverse applications. While the standard LCU procedure requires several ancilla qubits and sophisticated multi-qubit controlled operations, our methods consume significantly fewer quantum resources. The first method (Single-Ancilla LCU) estimates expectation values of observables with respect to any quantum state prepared by an LCU procedure while requiring only a single ancilla qubit, and no multi-qubit controlled operations. The second approach (Analog LCU) is a simple, physically motivated, continuous-time analogue of LCU, tailored to hybrid qubit-qumode systems. The third method (Ancilla-free LCU) requires no ancilla qubit at all and is useful when we are interested in the projection of a quantum state (prepared by the LCU procedure) in some subspace of interest. We apply the first two techniques to develop new quantum algorithms for a wide range of practical problems, ranging from Hamiltonian simulation, ground state preparation and property estimation, and quantum linear systems. Remarkably, despite consuming fewer quantum resources they retain a provable quantum advantage. The third technique allows us to connect discrete and continuous-time quantum walks with their classical counterparts. It also unifies the recently developed optimal quantum spatial search algorithms in both these frameworks, and leads to the development of new ones that require fewer ancilla qubits. Overall, our results are quite generic and can be readily applied to other problems, even beyond those considered here.

Given the Fourier-Legendre expansions of $f$ and $g$, and mild conditions on $f$ and $g$, we derive the Fourier-Legendre expansion of their product in terms of their corresponding Fourier-Legendre coefficients. In this way, expansions of whole number powers of $f$ may be obtained. We establish upper bounds on rates of convergence. We then employ these expansions to solve semi-analytically a class of nonlinear PDEs with a polynomial nonlinearity of degree 2. The obtained numerical results illustrate the efficiency and performance accuracy of this Fourier-Legendre based solution methodology for solving an important class of nonlinear PDEs.

The question of characterizing the (finite) representable relation algebras in a ``nice" way is open. The class $\mathbf{RRA}$ is known to be not finitely axiomatizable in first-order logic. Nevertheless, it is conjectured that ``almost all'' finite relation algebras are representable. All finite relation algebras with three or fewer atoms are representable. So one may ask, Over what cardinalities of sets are they representable? This question was answered completely by Andr\'eka and Maddux (``Representations for small relation algebras,'' \emph{Notre Dame J. Form. Log.}, \textbf{35} (1994)); they determine the spectrum of every finite relation algebra with three or fewer atoms. In the present paper, we restrict attention to cyclic group representations, and completely determine the cyclic group spectrum for all seven symmetric integral relation algebras on three atoms. We find that in some instances, the spectrum and cyclic spectrum agree; in other instances, the spectra disagree for finitely many $n$; finally, for other instances, the spectra disagree for infinitely many $n$. The proofs employ constructions, SAT solvers, and the probabilistic method.

Models for the dynamics of congestion control generally involve systems of coupled differential equations. Universally, these models assume that traffic sources saturate the maximum transmissions allowed by the congestion control method. This is not suitable for studying congestion control of intermittent but bursty traffic sources. In this paper, we present a characterization of congestion control for arbitrary time-varying traffic that applies to rate-based as well as window-based congestion control. We leverage the capability of network calculus to precisely describe the input-output relationship at network elements for arbitrary source traffic. We show that our characterization can closely track the dynamics of even complex congestion control algorithms.

We study finding and listing $k$-cliques in a graph, for constant $k\geq 3$, a fundamental problem of both theoretical and practical importance. Our main contribution is a new output-sensitive algorithm for listing $k$-cliques in graphs, for arbitrary $k\geq 3$, coupled with lower bounds based on standard fine-grained assumptions, showing that our algorithm's running time is tight. Previously, the only known conditionally optimal output-sensitive algorithms were for the case of $3$-cliques by Bj\"{o}rklund, Pagh, Vassilevska W. and Zwick [ICALP'14]. Typical inputs to subgraph isomorphism or listing problems are measured by the number of nodes $n$ or the number of edges $m$. Our framework is very general in that it gives $k$-clique listing algorithms whose running times are measured in terms of the number of $\ell$-cliques $\Delta_\ell$ in the graph for any $1\leq \ell<k$. This generalizes the typical parameterization in terms of $n$ (the number of $1$-cliques) and $m$ (the number of $2$-cliques). If the matrix multiplication exponent $\omega$ is $2$, and if the size of the output, $\Delta_k$, is sufficiently large, then for every $\ell<k$, the running time of our algorithm for listing $k$-cliques is $$\tilde{O}\left(\Delta_\ell^{\frac{2}{\ell (k - \ell)}}\Delta_k^{1-\frac{2}{k(k-\ell)}}\right).$$ For sufficiently large $\Delta_k$, we prove that this runtime is in fact {\em optimal} for all $1 \leq \ell < k$ under the Exact $k$-Clique hypothesis. In the special cases of $k = 4$ and $5$, our algorithm in terms of $n$ is conditionally optimal for all values of $\Delta_k$ if $\omega = 2$. Moreover, our framework is powerful enough to provide an improvement upon the 19-year old runtimes for $4$ and $5$-clique detection in $m$-edge graphs, as a function of $m$ [Eisenbrand and Grandoni, TCS'04].

Sampling from the output distributions of quantum computations comprising only commuting gates, known as instantaneous quantum polynomial (IQP) computations, is believed to be intractable for classical computers, and hence this task has become a leading candidate for testing the capabilities of quantum devices. Here we demonstrate that for an arbitrary IQP circuit undergoing dephasing or depolarizing noise, whose depth is greater than a critical $O(1)$ threshold, the output distribution can be efficiently sampled by a classical computer. Unlike other simulation algorithms for quantum supremacy tasks, we do not require assumptions on the circuit's architecture, on anti-concentration properties, nor do we require $\Omega(\log(n))$ circuit depth. We take advantage of the fact that IQP circuits have deep sections of diagonal gates, which allows the noise to build up predictably and induce a large-scale breakdown of entanglement within the circuit. Our results suggest that quantum supremacy experiments based on IQP circuits may be more susceptible to classical simulation than previously thought.

For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.

We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log n)$.

PyTorch \texttt{2.x} introduces a compiler designed to accelerate deep learning programs. However, for machine learning researchers, adapting to the PyTorch compiler to full potential can be challenging. The compiler operates at the Python bytecode level, making it appear as an opaque box. To address this, we introduce \texttt{depyf}, a tool designed to demystify the inner workings of the PyTorch compiler. \texttt{depyf} decompiles bytecode generated by PyTorch back into equivalent source code, and establishes connections between in-memory code objects and their on-disk source code counterparts. This feature enables users to step through the source code line by line using debuggers, thus enhancing their understanding of the underlying processes. Notably, \texttt{depyf} is non-intrusive and user-friendly, primarily relying on two convenient context managers for its core functionality. The project is \href{//github.com/thuml/depyf}{ openly available} and is recognized as a \href{//pytorch.org/ecosystem/}{PyTorch ecosystem project}.

北京阿比特科技有限公司