亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physics-Informed Neural Networks (PINNs) are Neural Network architectures trained to emulate solutions of differential equations without the necessity of solution data. They are currently ubiquitous in the scientific literature due to their flexible and promising settings. However, very little of the available research provides practical studies that aim for a better quantitative understanding of such architecture and its functioning. In this paper, we analyze the performance of PINNs for various architectural hyperparameters and algorithmic settings based on a novel error metric and other factors such as training time. The proposed metric and approach are tailored to evaluate how well a PINN generalizes to points outside its training domain. Besides, we investigate the effect of the algorithmic setup on the outcome prediction of a PINN, inside and outside its training domain, to explore the effect of each hyperparameter. Through our study, we assess how the algorithmic setup of PINNs influences their potential for generalization and deduce the settings which maximize the potential of a PINN for accurate generalization. The study that we present returns insightful and at times counterintuitive results on PINNs. These results can be useful in PINN applications when defining the model and evaluating it.

相關內容

Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot.

It is known that, for every $k\geq 2$, $C_{2k}$-freeness can be decided by a generic Monte-Carlo algorithm running in $n^{1-1/\Theta(k^2)}$ rounds in the CONGEST model. For $2\leq k\leq 5$, faster Monte-Carlo algorithms do exist, running in $O(n^{1-1/k})$ rounds, based on upper bounding the number of messages to be forwarded, and aborting search sub-routines for which this number exceeds certain thresholds. We investigate the possible extension of these threshold-based algorithms, for the detection of larger cycles. We first show that, for every $k\geq 6$, there exists an infinite family of graphs containing a $2k$-cycle for which any threshold-based algorithm fails to detect that cycle. Hence, in particular, neither $C_{12}$-freeness nor $C_{14}$-freeness can be decided by threshold-based algorithms. Nevertheless, we show that $\{C_{12},C_{14}\}$-freeness can still be decided by a threshold-based algorithm, running in $O(n^{1-1/7})= O(n^{0.857\dots})$ rounds, which is faster than using the generic algorithm, which would run in $O(n^{1-1/22})\simeq O(n^{0.954\dots})$ rounds. Moreover, we exhibit an infinite collection of families of cycles such that threshold-based algorithms can decide $\mathcal{F}$-freeness for every $\mathcal{F}$ in this collection.

Reliable application of machine learning-based decision systems in the wild is one of the major challenges currently investigated by the field. A large portion of established approaches aims to detect erroneous predictions by means of assigning confidence scores. This confidence may be obtained by either quantifying the model's predictive uncertainty, learning explicit scoring functions, or assessing whether the input is in line with the training distribution. Curiously, while these approaches all state to address the same eventual goal of detecting failures of a classifier upon real-life application, they currently constitute largely separated research fields with individual evaluation protocols, which either exclude a substantial part of relevant methods or ignore large parts of relevant failure sources. In this work, we systematically reveal current pitfalls caused by these inconsistencies and derive requirements for a holistic and realistic evaluation of failure detection. To demonstrate the relevance of this unified perspective, we present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions w.r.t all relevant methods and failure sources. The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation in the abundance of publicized research on confidence scoring. Code and trained models are at //github.com/IML-DKFZ/fd-shifts.

Inferring the parameters of ordinary differential equations (ODEs) from noisy observations is an important problem in many scientific fields. Currently, most parameter estimation methods that bypass numerical integration tend to rely on basis functions or Gaussian processes to approximate the ODE solution and its derivatives. Due to the sensitivity of the ODE solution to its derivatives, these methods can be hindered by estimation error, especially when only sparse time-course observations are available. We present a Bayesian collocation framework that operates on the integrated form of the ODEs and also avoids the expensive use of numerical solvers. Our methodology has the capability to handle general nonlinear ODE systems. We demonstrate the accuracy of the proposed method through a simulation study, where the estimated parameters and recovered system trajectories are compared with other recent methods. A real data example is also provided.

We study the problem of achieving decentralized coordination by a group of strategic decision makers choosing to engage or not in a task in a stochastic setting. First, we define a class of symmetric utility games that encompass a broad class of coordination games, including the popular framework known as \textit{global games}. With the goal of studying the extent to which agents engaging in a stochastic coordination game indeed coordinate, we propose a new probabilistic measure of coordination efficiency. Then, we provide an universal information theoretic upper bound on the coordination efficiency as a function of the amount of noise in the observation channels. Finally, we revisit a large class of global games, and we illustrate that their Nash equilibrium policies may be less coordination efficient then certainty equivalent policies, despite of them providing better expected utility. This counter-intuitive result, establishes the existence of a nontrivial trade-offs between coordination efficiency and expected utility in coordination games.

In this paper we investigate the stability properties of the so-called gBBKS and GeCo methods, which belong to the class of nonstandard schemes and preserve the positivity as well as all linear invariants of the underlying system of ordinary differential equations for any step size. A stability investigation for these methods, which are outside the class of general linear methods, is challenging since the iterates are always generated by a nonlinear map even for linear problems. Recently, a stability theorem was derived presenting criteria for understanding such schemes. For the analysis, the schemes are applied to general linear equations and proven to be generated by $\mathcal C^1$-maps with locally Lipschitz continuous first derivatives. As a result, the above mentioned stability theorem can be applied to investigate the Lyapunov stability of non-hyperbolic fixed points of the numerical method by analyzing the spectrum of the corresponding Jacobian of the generating map. In addition, if a fixed point is proven to be stable, the theorem guarantees the local convergence of the iterates towards it. In the case of first and second order gBBKS schemes the stability domain coincides with that of the underlying Runge--Kutta method. Furthermore, while the first order GeCo scheme converts steady states to stable fixed points for all step sizes and all linear test problems of finite size, the second order GeCo scheme has a bounded stability region for the considered test problems. Finally, all theoretical predictions from the stability analysis are validated numerically.

We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems. Specifically, we design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit. Notably, the system integrates learnable lateral competition, noise injection, and elements of predictive coding, an emerging and viable neurobiological process theory of cortical function, with the forward-forward (FF) adaptation scheme. Furthermore, PFF efficiently learns to propagate learning signals and updates synapses with forward passes only, eliminating key structural and computational constraints imposed by backpropagation-based schemes. Besides computational advantages, the PFF process could prove useful for understanding the learning mechanisms behind biological neurons that use local signals despite missing feedback connections. We run experiments on image data and demonstrate that the PFF procedure works as well as backpropagation, offering a promising brain-inspired algorithm for classifying, reconstructing, and synthesizing data patterns.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

北京阿比特科技有限公司