Unpaired image translation algorithms can be used for sim2real tasks, but many fail to generate temporally consistent results. We present a new approach that combines differentiable rendering with image translation to achieve temporal consistency over indefinite timescales, using surface consistency losses and \emph{neural neural textures}. We call this algorithm TRITON (Texture Recovering Image Translation Network): an unsupervised, end-to-end, stateless sim2real algorithm that leverages the underlying 3D geometry of input scenes by generating realistic-looking learnable neural textures. By settling on a particular texture for the objects in a scene, we ensure consistency between frames statelessly. Unlike previous algorithms, TRITON is not limited to camera movements -- it can handle the movement of objects as well, making it useful for downstream tasks such as robotic manipulation.
The emerging paradigm of resource disaggregation enables the deployment of cloud-like services across a pool of physical and virtualized resources, interconnected using a network fabric. This design embodies several benefits in terms of resource efficiency and cost-effectiveness, service elasticity and adaptability, etc. Application domains benefiting from such a trend include cyber-physical systems (CPS), tactile internet, 5G networks and beyond, or mixed reality applications, all generally embodying heterogeneous Quality of Service (QoS) requirements. In this context, a key enabling factor to fully support those mixed-criticality scenarios will be the network and the system-level support for time-sensitive communication. Although a lot of work has been conducted on devising efficient orchestration and CPU scheduling strategies, the networking aspects of performance-critical components remain largely unstudied. Bridging this gap, we propose KuberneTSN, an original solution built on the Kubernetes platform, providing support for time-sensitive traffic to unmodified application binaries. We define an architecture for an accelerated and deterministic overlay network, which includes kernel-bypassing networking features as well as a novel userspace packet scheduler compliant with the Time-Sensitive Networking (TSN) standard. The solution is implemented as tsn-cni, a Kubernetes network plugin that can coexist alongside popular alternatives. To assess the validity of the approach, we conduct an experimental analysis on a real distributed testbed, demonstrating that KuberneTSN enables applications to easily meet deterministic deadlines, provides the same guarantees of bare-metal deployments, and outperforms overlay networks built using the Flannel plugin.
We propose LookinGood^{\pi}, a novel neural re-rendering approach that is aimed to (1) improve the rendering quality of the low-quality reconstructed results from human performance capture system in real-time; (2) improve the generalization ability of the neural rendering network on unseen people. Our key idea is to utilize the rendered image of reconstructed geometry as the guidance to assist the prediction of person-specific details from few reference images, thus enhancing the re-rendered result. In light of this, we design a two-branch network. A coarse branch is designed to fix some artifacts (i.e. holes, noise) and obtain a coarse version of the rendered input, while a detail branch is designed to predict "correct" details from the warped references. The guidance of the rendered image is realized by blending features from two branches effectively in the training of the detail branch, which improves both the warping accuracy and the details' fidelity. We demonstrate that our method outperforms state-of-the-art methods at producing high-fidelity images on unseen people.
Deep learning-based grasp prediction models have become an industry standard for robotic bin-picking systems. To maximize pick success, production environments are often equipped with several end-effector tools that can be swapped on-the-fly, based on the target object. Tool-change, however, takes time. Choosing the order of grasps to perform, and corresponding tool-change actions, can improve system throughput; this is the topic of our work. The main challenge in planning tool change is uncertainty - we typically cannot see objects in the bin that are currently occluded. Inspired by queuing and admission control problems, we model the problem as a Markov Decision Process (MDP), where the goal is to maximize expected throughput, and we pursue an approximate solution based on model predictive control, where at each time step we plan based only on the currently visible objects. Special to our method is the idea of void zones, which are geometrical boundaries in which an unknown object will be present, and therefore cannot be accounted for during planning. Our planning problem can be solved using integer linear programming (ILP). However, we find that an approximate solution based on sparse tree search yields near optimal performance at a fraction of the time. Another question that we explore is how to measure the performance of tool-change planning: we find that throughput alone can fail to capture delicate and smooth behavior, and propose a principled alternative. Finally, we demonstrate our algorithms on both synthetic and real world bin picking tasks.
The recent advancements in wireless technology enable connected autonomous vehicles (CAVs) to gather data via vehicle-to-vehicle (V2V) communication, such as processed LIDAR and camera data from other vehicles. In this work, we design an integrated information sharing and safe multi-agent reinforcement learning (MARL) framework for CAVs, to take advantage of the extra information when making decisions to improve traffic efficiency and safety. We first use weight pruned convolutional neural networks (CNN) to process the raw image and point cloud LIDAR data locally at each autonomous vehicle, and share CNN-output data with neighboring CAVs. We then design a safe actor-critic algorithm that utilizes both a vehicle's local observation and the information received via V2V communication to explore an efficient behavior planning policy with safety guarantees. Using the CARLA simulator for experiments, we show that our approach improves the CAV system's efficiency in terms of average velocity and comfort under different CAV ratios and different traffic densities. We also show that our approach avoids the execution of unsafe actions and always maintains a safe distance from other vehicles. We construct an obstacle-at-corner scenario to show that the shared vision can help CAVs to observe obstacles earlier and take action to avoid traffic jams.
Simulations of biophysical systems have provided a huge contribution to our fundamental understanding of human physiology and remain a central pillar for developments in medical devices and human machine interfaces. However, despite their successes, such simulations usually rely on highly computationally expensive numerical modelling, which is often inefficient to adapt to new simulation parameters. This limits their use in simulating dynamic human behaviours, which typically proceed along a sequence of small time steps. One may painstakingly produce a few static simulations at discretised stages, but not the hundreds of simulations that are essential to capture the dynamic nature of human body. We propose that an alternative approach is to use conditional generative models, which can learn complex relationships between the underlying generative conditions and the output data whilst remaining inexpensive to sample from. As a demonstration of this concept, we present BioMime, a hybrid-structured generative model that combines elements of deep latent variable models and conditional adversarial training. We demonstrate that BioMime can learn to accurately mimic a complex numerical model of human muscle biophysics and then use this knowledge to continuously sample from a dynamically changing system in a short time. This ultimately converts a static model into a dynamic one with no effort. We argue that transfer learning approaches with conditional generative models are a viable solution for dynamic simulation with any numerical model.
The human hand is the main medium through which we interact with our surroundings. Hence, its digitization is of uttermost importance, with direct applications in VR/AR, gaming, and media production amongst other areas. While there are several works for modeling the geometry and articulations of hands, little attention has been dedicated to capturing photo-realistic appearance. In addition, for applications in extended reality and gaming, real-time rendering is critical. In this work, we present the first neural-implicit approach to photo-realistically render hands in real-time. This is a challenging problem as hands are textured and undergo strong articulations with various pose-dependent effects. However, we show that this can be achieved through our carefully designed method. This includes training on a low-resolution rendering of a neural radiance field, together with a 3D-consistent super-resolution module and mesh-guided space canonicalization and sampling. In addition, we show the novel application of a perceptual loss on the image space is critical for achieving photorealism. We show rendering results for several identities, and demonstrate that our method captures pose- and view-dependent appearance effects. We also show a live demo of our method where we photo-realistically render the human hand in real-time for the first time in literature. We ablate all our design choices and show that our design optimizes for both photorealism and rendering speed. Our code will be released to encourage further research in this area.
Generating safe motion plans in real-time is a key requirement for deploying robot manipulators to assist humans in collaborative settings. In particular, robots must satisfy strict safety requirements to avoid self-damage or harming nearby humans. Satisfying these requirements is particularly challenging if the robot must also operate in real-time to adjust to changes in its environment.This paper addresses these challenges by proposing Reachability-based Signed Distance Functions (RDFs) as a neural implicit representation for robot safety. RDF, which can be constructed using supervised learning in a tractable fashion, accurately predicts the distance between the swept volume of a robot arm and an obstacle. RDF's inference and gradient computations are fast and scale linearly with the dimension of the system; these features enable its use within a novel real-time trajectory planning framework as a continuous-time collision-avoidance constraint. The planning method using RDF is compared to a variety of state-of-the-art techniques and is demonstrated to successfully solve challenging motion planning tasks for high-dimensional systems faster and more reliably than all tested methods.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.