亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study $\mu_5(n)$, the minimum number of convex pentagons induced by $n$ points in the plane in general position. Despite a significant body of research in understanding $\mu_4(n)$, the variant concerning convex quadrilaterals, not much is known about $\mu_5(n)$. We present two explicit constructions, inspired by point placements obtained through a combination of Stochastic Local Search and a program for realizability of point sets, that provide $\mu_5(n) \leq \binom{\lfloor n/2 \rfloor}{5} + \binom{\lceil n/2 \rceil}{5}$. Furthermore, we conjecture this bound to be optimal, and provide partial evidence by leveraging a MaxSAT encoding that allows us to verify our conjecture for $n \leq 16$.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Given a finite point set $P$ in ${\mathbb R}^d$, and $\epsilon>0$ we say that $N\subseteq{ \mathbb R}^d$ is a weak $\epsilon$-net if it pierces every convex set $K$ with $|K\cap P|\geq \epsilon |P|$. We show that for any finite point set in dimension $d\geq 3$, and any $\epsilon>0$, one can construct a weak $\epsilon$-net whose cardinality is $\displaystyle O^*\left(\frac{1}{\epsilon^{2.558}}\right)$ in dimension $d=3$, and $\displaystyle o\left(\frac{1}{\epsilon^{d-1/2}}\right)$ in all dimensions $d\geq 4$. To be precise, our weak $\epsilon$-net has cardinality $\displaystyle O\left(\frac{1}{\epsilon^{\alpha_d+\gamma}}\right)$ for any $\gamma>0$, with $$ \alpha_d= \left\{ \begin{array}{l} 2.558 & \text{if} \ d=3 \\3.48 & \text{if} \ d=4 \\\left(d+\sqrt{d^2-2d}\right)/2 & \text{if} \ d\geq 5. \end{array}\right\} $$ This is the first significant improvement of the bound of $\displaystyle \tilde{O}\left(\frac{1}{\epsilon^d}\right)$ that was obtained in 1993 by Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension $d\geq 3$.

In this paper, we prove the first \emph{super-polynomial} and, in fact, \emph{exponential} lower bound for the model of \emph{sum of read-once oblivious algebraic branching programs} (ROABPs). In particular, we give an explicit polynomial such that any sum of ROABPs (equivalently, sum of \emph{ordered} set-multilinear branching programs, each with a possibly different ordering) computing it must have exponential size. This result generalizes the seminal work of Nisan (STOC 1991), which proved an exponential lower bound for a single ROABP. It also strengthens the work of Arvind and Raja (Chic. J. Theor. Comput. Sci., 2016), as well as the work of Bhargav, Dwivedi, and Saxena (2023), both of which established lower bounds against certain restricted versions of this model, and strongly answers an open question from both papers that asked to prove super-polynomial lower bounds for the corresponding \emph{unrestricted} model. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (2023), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs -- for a polynomial of sufficiently low degree -- would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant's longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by $O(\log n/ \log \log n)$, then it would imply super-polynomial lower bounds against general ABPs. In this paper, we show super-polynomial lower bounds against this model for a polynomial whose degree is as small as $\omega(\log n)$. Prior to our work, showing such lower bounds was open \emph{irrespective} of the assumption on the degree.

Temporal knowledge graphs represent temporal facts $(s,p,o,\tau)$ relating a subject $s$ and an object $o$ via a relation label $p$ at time $\tau$, where $\tau$ could be a time point or time interval. Temporal knowledge graphs may exhibit static temporal patterns at distinct points in time and dynamic temporal patterns between different timestamps. In order to learn a rich set of static and dynamic temporal patterns and apply them for inference, several embedding approaches have been suggested in the literature. However, as most of them resort to single underlying embedding spaces, their capability to model all kinds of temporal patterns was severely limited by having to adhere to the geometric property of their one embedding space. We lift this limitation by an embedding approach that maps temporal facts into a product space of several heterogeneous geometric subspaces with distinct geometric properties, i.e.\ Complex, Dual, and Split-complex spaces. In addition, we propose a temporal-geometric attention mechanism to integrate information from different geometric subspaces conveniently according to the captured relational and temporal information. Experimental results on standard temporal benchmark datasets favorably evaluate our approach against state-of-the-art models.

We show an $O(n)$-time reduction from the problem of testing whether a multiset of positive integers can be partitioned into two multisets so that the sum of the integers in each multiset is equal to $n/2$ to the problem of testing whether an $n$-vertex biconnected outerplanar DAG admits an upward planar drawing. This constitutes the first barrier to the existence of efficient algorithms for testing the upward planarity of DAGs with no large triconnected minor. We also show a result in the opposite direction. Suppose that partitioning a multiset of positive integers into two multisets so that the sum of the integers in each multiset is $n/2$ can be solved in $f(n)$ time. Let $G$ be an $n$-vertex biconnected outerplanar DAG and $e$ be an edge incident to the outer face of an outerplanar drawing of $G$. Then it can be tested in $O(f(n))$ time whether $G$ admits an upward planar drawing with $e$ on the outer face.

Gaussian processes (GPs) are the most common formalism for defining probability distributions over spaces of functions. While applications of GPs are myriad, a comprehensive understanding of GP sample paths, i.e. the function spaces over which they define a probability measure on, is lacking. In practice, GPs are not constructed through a probability measure, but instead through a mean function and a covariance kernel. In this paper we provide necessary and sufficient conditions on the covariance kernel for the sample paths of the corresponding GP to attain a given regularity. We use the framework of H\"older regularity as it grants us particularly straightforward conditions, which simplify further in the cases of stationary and isotropic GPs. We then demonstrate that our results allow for novel and unusually tight characterisations of the sample path regularities of the GPs commonly used in machine learning applications, such as the Mat\'ern GPs.

Classical mathematical statistics deals with models that are parametrized by a Euclidean, i.e. finite dimensional, parameter. Quite often such models have been and still are chosen in practical situations for their mathematical simplicity and tractability. However, these models are typically inappropriate since the implied distributional assumptions cannot be supported by hard evidence. It is natural then to relax these assumptions. This leads to the class of semiparametric models. These models have been studied in a local asymptotic setting, in which the Convolution Theorem yields bounds on the performance of regular estimators. Alternatively, local asymptotics can be based on the Local Asymptotic Minimax Theorem and on the Local Asymptotic Spread Theorem, both valid for any sequence of estimators. This Local Asymptotic Spread Theorem is a straightforward consequence of a Finite Sample Spread Inequality, which has some intrinsic value for estimation theory in general. We will discuss both the Finite Sample and Local Asymptotic Spread Theorem, as well as the Convolution Theorem.

A new $H(\textrm{divdiv})$-conforming finite element is presented, which avoids the need for super-smoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and $C^0$ discontinuous Galerkin methods for the biharmonic equation are derived.

A Gr\"obner basis computation for the Weyl algebra with respect to a tropical term order and by using a homogenization-dehomogenization technique is sufficiently sluggish. A significant number of reductions to zero occur. To improve the computation, a tropical F5 algorithm is developed for this context. As a member of the family of signature-based algorithms, this algorithm keeps track of where Weyl algebra elements come from to anticipate reductions to zero. The total order for ordering module monomials or signatures in this paper is designed as close as possible to the definition of the tropical term order. As in Vaccon et al. (2021), this total order is not compatible with the tropical term order.

The quantum communication cost of computing a classical sum of distributed sources is studied over a quantum erasure multiple access channel (QEMAC). $K$ classical messages are distributed across $S$ servers, who also share quantum entanglement in advance. Each server $s\in[S]$ manipulates and sends its quantum subsystem $\mathcal{Q}_s$ to the receiver who computes the sum of the messages. The download cost from Server $s\in [S]$ is the logarithm of the dimension of $\mathcal{Q}_s$. The rate $R$ is defined as the number of instances of the sum computed at the receiver, divided by the total download cost from all the servers. In the symmetric setting with $K= {S \choose \alpha} $ messages where each message is replicated among a unique subset of $\alpha$ servers, and the answers from any $\beta$ servers may be erased, we show that the capacity (maximal rate) is $C= \max\left\{ \min \left\{ \frac{2(\alpha-\beta)}{S}, \frac{S-2\beta}{S} \right\}, \frac{\alpha-\beta}{S} \right\}$.

We explore the concept of separating systems of vertex sets of graphs. A separating system of a set $X$ is a collection of subsets of $X$ such that for any pair of distinct elements in $X$, there exists a set in the separating system that contains exactly one of the two elements. A separating system of the vertex set of a graph $G$ is called a vertex-separating path (tree) system of $G$ if the elements of the separating system are paths (trees) in the graph $G$. In this paper, we focus on the size of the smallest vertex-separating path (tree) system for different types of graphs, including trees, grids, and maximal outerplanar graphs.

北京阿比特科技有限公司