亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show an $O(n)$-time reduction from the problem of testing whether a multiset of positive integers can be partitioned into two multisets so that the sum of the integers in each multiset is equal to $n/2$ to the problem of testing whether an $n$-vertex biconnected outerplanar DAG admits an upward planar drawing. This constitutes the first barrier to the existence of efficient algorithms for testing the upward planarity of DAGs with no large triconnected minor. We also show a result in the opposite direction. Suppose that partitioning a multiset of positive integers into two multisets so that the sum of the integers in each multiset is $n/2$ can be solved in $f(n)$ time. Let $G$ be an $n$-vertex biconnected outerplanar DAG and $e$ be an edge incident to the outer face of an outerplanar drawing of $G$. Then it can be tested in $O(f(n))$ time whether $G$ admits an upward planar drawing with $e$ on the outer face.

相關內容

在數學中,多重集是對集的概念的修改,與集不同,集對每個元素允許多個實例。 為每個元素提供的實例的正整數個數稱為該元素在多重集中的多重性。 結果存在無限多個多重集,它們僅包含元素a和b,但因元素的多樣性而變化:(1)集{a,b}僅包含元素a和b,當將{a,b}視為多集時,每個元素的多重性為1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。

For a field $\mathbb{F}$ and integers $d$ and $k$, a set of vectors of $\mathbb{F}^d$ is called $k$-nearly orthogonal if its members are non-self-orthogonal and every $k+1$ of them include an orthogonal pair. We prove that for every prime $p$ there exists a positive constant $\delta = \delta (p)$, such that for every field $\mathbb{F}$ of characteristic $p$ and for all integers $k \geq 2$ and $d \geq k^{1/(p-1)}$, there exists a $k$-nearly orthogonal set of at least $d^{\delta \cdot k^{1/(p-1)}/ \log k}$ vectors of $\mathbb{F}^d$. In particular, for the binary field we obtain a set of $d^{\Omega( k /\log k)}$ vectors, and this is tight up to the $\log k$ term in the exponent. For comparison, the best known lower bound over the reals is $d^{\Omega( \log k / \log \log k)}$ (Alon and Szegedy, Graphs and Combin., 1999). The proof combines probabilistic and spectral arguments.

Given an edge-weighted metric complete graph with $n$ vertices, the maximum weight metric triangle packing problem is to find a set of $n/3$ vertex-disjoint triangles with the total weight of all triangles in the packing maximized. Several simple methods can lead to a 2/3-approximation ratio. However, this barrier is not easy to break. Chen et al. proposed a randomized approximation algorithm with an expected ratio of $(0.66768-\varepsilon)$ for any constant $\varepsilon>0$. In this paper, we improve the approximation ratio to $(0.66835-\varepsilon)$. Furthermore, we can derandomize our algorithm.

Quantum devices use qubits to represent information, which allows them to exploit important properties from quantum physics, specifically superposition and entanglement. As a result, quantum computers have the potential to outperform the most advanced classical computers. In recent years, quantum algorithms have shown hints of this promise, and many algorithms have been proposed for the quantum domain. There are two key hurdles to solving difficult real-world problems on quantum computers. The first is on the hardware front -- the number of qubits in the most advanced quantum systems is too small to make the solution of large problems practical. The second involves the algorithms themselves -- as quantum computers use qubits, the algorithms that work there are fundamentally different from those that work on traditional computers. As a result of these constraints, research has focused on developing approaches to solve small versions of problems as proofs of concept -- recognizing that it would be possible to scale these up once quantum devices with enough qubits become available. Our objective in this paper is along the same lines. We present a quantum approach to solve a well-studied problem in the context of data sharing. This heuristic uses the well-known Quantum Approximate Optimization Algorithm (QAOA). We present results on experiments involving small datasets to illustrate how the problem could be solved using quantum algorithms. The results show that the method has potential and provide answers close to optimal. At the same time, we realize there are opportunities for improving the method further.

The angular synchronization problem aims to accurately estimate (up to a constant additive phase) a set of unknown angles $\theta_1, \dots, \theta_n\in[0, 2\pi)$ from $m$ noisy measurements of their offsets $\theta_i-\theta_j \;\mbox{mod} \; 2\pi.$ Applications include, for example, sensor network localization, phase retrieval, and distributed clock synchronization. An extension of the problem to the heterogeneous setting (dubbed $k$-synchronization) is to estimate $k$ groups of angles simultaneously, given noisy observations (with unknown group assignment) from each group. Existing methods for angular synchronization usually perform poorly in high-noise regimes, which are common in applications. In this paper, we leverage neural networks for the angular synchronization problem, and its heterogeneous extension, by proposing GNNSync, a theoretically-grounded end-to-end trainable framework using directed graph neural networks. In addition, new loss functions are devised to encode synchronization objectives. Experimental results on extensive data sets demonstrate that GNNSync attains competitive, and often superior, performance against a comprehensive set of baselines for the angular synchronization problem and its extension, validating the robustness of GNNSync even at high noise levels.

Bayesian optimization has been successfully applied to optimize black-box functions where the number of evaluations is severely limited. However, in many real-world applications, it is hard or impossible to know in advance which designs are feasible due to some physical or system limitations. These issues lead to an even more challenging problem of optimizing an unknown function with unknown constraints. In this paper, we observe that in such scenarios optimal solution typically lies on the boundary between feasible and infeasible regions of the design space, making it considerably more difficult than that with interior optima. Inspired by this observation, we propose BE-CBO, a new Bayesian optimization method that efficiently explores the boundary between feasible and infeasible designs. To identify the boundary, we learn the constraints with an ensemble of neural networks that outperform the standard Gaussian Processes for capturing complex boundaries. Our method demonstrates superior performance against state-of-the-art methods through comprehensive experiments on synthetic and real-world benchmarks.

Robust fine-tuning aims to ensure performance on out-of-distribution (OOD) samples, which is sometimes compromised by pursuing adaptation on in-distribution (ID) samples. However, another criterion for reliable machine learning -- confidence calibration has been overlooked despite its increasing demand for real-world high-stakes applications, e.g., autonomous driving. We raise concerns about the calibration of fine-tuned vision-language models (VLMs) under distribution shift by showing that naive fine-tuning and even state-of-the-art robust fine-tuning hurt the calibration of pre-trained VLMs, especially on OOD datasets. We first show the OOD calibration error is bounded from above with ID calibration errors and domain discrepancy between ID and OOD. From this analysis, we propose CaRot, a calibrated robust fine-tuning method that incentivizes ID calibration and robust prediction across domains to reduce the upper bound of OOD calibration error. Extensive experiments on three types of distribution shifts (natural, synthetic, and adversarial) on ImageNet-1K classification demonstrate the effectiveness of CaRot across diverse environments. We justify the empirical success of CaRot through our theoretical analysis.

We characterize the learning dynamics of stochastic gradient descent (SGD) when continuous symmetry exists in the loss function, where the divergence between SGD and gradient descent is dramatic. We show that depending on how the symmetry affects the learning dynamics, we can divide a family of symmetry into two classes. For one class of symmetry, SGD naturally converges to solutions that have a balanced and aligned gradient noise. For the other class of symmetry, SGD will almost always diverge. Then, we show that our result remains applicable and can help us understand the training dynamics even when the symmetry is not present in the loss function. Our main result is universal in the sense that it only depends on the existence of the symmetry and is independent of the details of the loss function. We demonstrate that the proposed theory offers an explanation of progressive sharpening and flattening and can be applied to common practical problems such as representation normalization, matrix factorization, and the use of warmup.

This work proposes a class of locally differentially private mechanisms for linear queries, in particular range queries, that leverages correlated input perturbation to simultaneously achieve unbiasedness, consistency, statistical transparency, and control over utility requirements in terms of accuracy targets expressed either in certain query margins or as implied by the hierarchical database structure. The proposed Cascade Sampling algorithm instantiates the mechanism exactly and efficiently. Our bounds show that we obtain near-optimal utility while being empirically competitive against output perturbation methods.

Probabilistic forecasting of irregularly sampled multivariate time series with missing values is an important problem in many fields, including health care, astronomy, and climate. State-of-the-art methods for the task estimate only marginal distributions of observations in single channels and at single timepoints, assuming a fixed-shape parametric distribution. In this work, we propose a novel model, ProFITi, for probabilistic forecasting of irregularly sampled time series with missing values using conditional normalizing flows. The model learns joint distributions over the future values of the time series conditioned on past observations and queried channels and times, without assuming any fixed shape of the underlying distribution. As model components, we introduce a novel invertible triangular attention layer and an invertible non-linear activation function on and onto the whole real line. We conduct extensive experiments on four datasets and demonstrate that the proposed model provides $4$ times higher likelihood over the previously best model.

In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to input scene size is significantly smaller compared to 2D detection cases. Overlooking this difference, many 3D detectors directly follow the common practice of 2D detectors, which downsample the feature maps even after quantizing the point clouds. In this paper, we start by rethinking how such multi-stride stereotype affects the LiDAR-based 3D object detectors. Our experiments point out that the downsampling operations bring few advantages, and lead to inevitable information loss. To remedy this issue, we propose Single-stride Sparse Transformer (SST) to maintain the original resolution from the beginning to the end of the network. Armed with transformers, our method addresses the problem of insufficient receptive field in single-stride architectures. It also cooperates well with the sparsity of point clouds and naturally avoids expensive computation. Eventually, our SST achieves state-of-the-art results on the large scale Waymo Open Dataset. It is worth mentioning that our method can achieve exciting performance (83.8 LEVEL 1 AP on validation split) on small object (pedestrian) detection due to the characteristic of single stride. Codes will be released at //github.com/TuSimple/SST

北京阿比特科技有限公司