This work focuses on the potential of Vision LLMs (VLLMs) in visual reasoning. Different from prior studies, we shift our focus from evaluating standard performance to introducing a comprehensive safety evaluation suite, covering both out-of-distribution (OOD) generalization and adversarial robustness. For the OOD evaluation, we present two novel VQA datasets, each with one variant, designed to test model performance under challenging conditions. In exploring adversarial robustness, we propose a straightforward attack strategy for misleading VLLMs to produce visual-unrelated responses. Moreover, we assess the efficacy of two jailbreaking strategies, targeting either the vision or language component of VLLMs. Our evaluation of 21 diverse models, ranging from open-source VLLMs to GPT-4V, yields interesting observations: 1) Current VLLMs struggle with OOD texts but not images, unless the visual information is limited; and 2) These VLLMs can be easily misled by deceiving vision encoders only, and their vision-language training often compromise safety protocols. We release this safety evaluation suite at //github.com/UCSC-VLAA/vllm-safety-benchmark.
Fluid antenna systems (FASs) can reconfigure their antenna locations freely within a spatially continuous space. To keep favorable antenna positions, the channel state information (CSI) acquisition for FASs is essential. While some techniques have been proposed, most existing FAS channel estimators require several channel assumptions, such as slow variation and angular-domain sparsity. When these assumptions are not reasonable, the model mismatch may lead to unpredictable performance loss. In this paper, we propose the successive Bayesian reconstructor (S-BAR) as a general solution to estimate FAS channels. Unlike model-based estimators, the proposed S-BAR is prior-aided, which builds the experiential kernel for CSI acquisition. Inspired by Bayesian regression, the key idea of S-BAR is to model the FAS channels as a stochastic process, whose uncertainty can be successively eliminated by kernel-based sampling and regression. In this way, the predictive mean of the regressed stochastic process can be viewed as the maximum a posterior (MAP) estimator of FAS channels. Simulation results verify that, in both model-mismatched and model-matched cases, the proposed S-BAR can achieve higher estimation accuracy than the existing schemes.
This work studies learning from a synergy process of 3D Morphable Models (3DMM) and 3D facial landmarks to predict complete 3D facial geometry, including 3D alignment, face orientation, and 3D face modeling. Our synergy process leverages a representation cycle for 3DMM parameters and 3D landmarks. 3D landmarks can be extracted and refined from face meshes built by 3DMM parameters. We next reverse the representation direction and show that predicting 3DMM parameters from sparse 3D landmarks improves the information flow. Together we create a synergy process that utilizes the relation between 3D landmarks and 3DMM parameters, and they collaboratively contribute to better performance. We extensively validate our contribution on full tasks of facial geometry prediction and show our superior and robust performance on these tasks for various scenarios. Particularly, we adopt only simple and widely-used network operations to attain fast and accurate facial geometry prediction. Codes and data: //choyingw.github.io/works/SynergyNet/
This study explores how discussing metaphors for AI can help build awareness of the frames that shape our understanding of AI systems, particularly large language models (LLMs) like ChatGPT. Given the pressing need to teach "critical AI literacy", discussion of metaphor provides an opportunity for inquiry and dialogue with space for nuance, playfulness, and critique. Using a collaborative autoethnographic methodology, we analyzed metaphors from a range of sources, and reflected on them individually according to seven questions, then met and discussed our interpretations. We then analyzed how our reflections contributed to the three kinds of literacies delineated in Selber's multiliteracies framework: functional, critical, and rhetorical. These allowed us to analyze questions of ethics, equity, and accessibility in relation to AI. We explored each metaphor along the dimension of whether or not it was promoting anthropomorphizing, and to what extent such metaphors imply that AI is sentient. Our findings highlight the role of metaphor reflection in fostering a nuanced understanding of AI, suggesting that our collaborative autoethnographic approach as well as the heuristic model of plotting AI metaphors on dimensions of anthropomorphism and multiliteracies, might be useful for educators and researchers in the pursuit of advancing critical AI literacy.
Reasoning about distance is indispensable for establishing or avoiding contact in manipulation tasks. To this end, we present an online method for learning implicit representations of signed distance using piecewise polynomial basis functions. Starting from an arbitrary prior shape, our approach incrementally constructs a continuous representation from incoming point cloud data. It offers fast access to distance and analytical gradients without the need to store training data. We assess the accuracy of our model on a diverse set of household objects and compare it to neural network and Gaussian process counterparts. Distance reconstruction and real-time updates are further evaluated in a physical experiment by simultaneously collecting sparse point cloud data and using the evolving model to control a manipulator.
In this study, we address the emerging necessity of converting Standard Dynamic Range Television (SDRTV) content into High Dynamic Range Television (HDRTV) in light of the limited number of native HDRTV content. A principal technical challenge in this conversion is the exacerbation of coding artifacts inherent in SDRTV, which detrimentally impacts the quality of the resulting HDRTV. To address this issue, our method introduces a novel approach that conceptualizes the SDRTV-to-HDRTV conversion as a composite task involving dual degradation restoration. This encompasses inverse tone mapping in conjunction with video restoration. We propose Dual Inversion Downgraded SDRTV to HDRTV Network (DIDNet), which can accurately perform inverse tone mapping while preventing encoding artifacts from being amplified, thereby significantly improving visual quality. DIDNet integrates an intermediate auxiliary loss function to effectively separate the dual degradation restoration tasks and efficient learning of both artifact reduction and inverse tone mapping during end-to-end training. Additionally, DIDNet introduces a spatio-temporal feature alignment module for video frame fusion, which augments texture quality and reduces artifacts. The architecture further includes a dual-modulation convolution mechanism for optimized inverse tone mapping. Recognizing the richer texture and high-frequency information in HDRTV compared to SDRTV, we further introduce a wavelet attention module to enhance frequency features. Our approach demonstrates marked superiority over existing state-of-the-art techniques in terms of quantitative performance and visual quality.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.