To improve the precision of inferences and reduce costs there is considerable interest in combining data from several sources such as sample surveys and administrative data. Appropriate methodology is required to ensure satisfactory inferences since the target populations and methods for acquiring data may be quite different. To provide improved inferences we use methodology that has a more general structure than the ones in current practice. We start with the case where the analyst has only summary statistics from each of the sources. In our primary method, uncertain pooling, it is assumed that the analyst can regard one source, survey $r$, as the single best choice for inference. This method starts with the data from survey $r$ and adds data from those other sources that are shown to form clusters that include survey $r$. We also consider Dirichlet process mixtures, one of the most popular nonparametric Bayesian methods. We use analytical expressions and the results from numerical studies to show properties of the methodology.
Downsampling produces coarsened, multi-resolution representations of data and it is used, for example, to produce lossy compression and visualization of large images, reduce computational costs, and boost deep neural representation learning. Unfortunately, due to their lack of a regular structure, there is still no consensus on how downsampling should apply to graphs and linked data. Indeed reductions in graph data are still needed for the goals described above, but reduction mechanisms do not have the same focus on preserving topological structures and properties, while allowing for resolution-tuning, as is the case in regular data downsampling. In this paper, we take a step in this direction, introducing a unifying interpretation of downsampling in regular and graph data. In particular, we define a graph coarsening mechanism which is a graph-structured counterpart of controllable equispaced coarsening mechanisms in regular data. We prove theoretical guarantees for distortion bounds on path lengths, as well as the ability to preserve key topological properties in the coarsened graphs. We leverage these concepts to define a graph pooling mechanism that we empirically assess in graph classification tasks, providing a greedy algorithm that allows efficient parallel implementation on GPUs, and showing that it compares favorably against pooling methods in literature.
Given the prevalence of missing data in modern statistical research, a broad range of methods is available for any given imputation task. How does one choose the `best' imputation method in a given application? The standard approach is to select some observations, set their status to missing, and compare prediction accuracy of the methods under consideration of these observations. Besides having to somewhat artificially mask observations, a shortcoming of this approach is that imputations based on the conditional mean will rank highest if predictive accuracy is measured with quadratic loss. In contrast, we want to rank highest an imputation that can sample from the true conditional distributions. In this paper, we develop a framework called "Imputation Scores" (I-Scores) for assessing missing value imputations. We provide a specific I-Score based on density ratios and projections, that is applicable to discrete and continuous data. It does not require to mask additional observations for evaluations and is also applicable if there are no complete observations. The population version is shown to be proper in the sense that the highest rank is assigned to an imputation method that samples from the correct conditional distribution. The propriety is shown under the missing completely at random (MCAR) assumption but is also shown to be valid under missing at random (MAR) with slightly more restrictive assumptions. We show empirically on a range of data sets and imputation methods that our score consistently ranks true data high(est) and is able to avoid pitfalls usually associated with performance measures such as RMSE. Finally, we provide the R-package Iscores available on CRAN with an implementation of our method.
Auto-regressive moving-average (ARMA) models are ubiquitous forecasting tools. Parsimony in such models is highly valued for their interpretability and computational tractability, and as such the identification of model orders remains a fundamental task. We propose a novel method of ARMA order identification through projection predictive inference, which is grounded in Bayesian decision theory and naturally allows for uncertainty communication. It benefits from improved stability through the use of a reference model. The procedure consists of two steps: in the first, the practitioner incorporates their understanding of underlying data-generating process into a reference model, which we latterly project onto possibly parsimonious submodels. These submodels are optimally inferred to best replicate the predictive performance of the reference model. We further propose a search heuristic amenable to the ARMA framework. We show that the submodels selected by our procedure exhibit predictive performance at least as good as those produced by auto.arima over simulated and real-data experiments, and in some cases out-perform the latter. Finally we show that our procedure is robust to noise, and scales well to larger data.
We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE) fail to satisfy basic properties like continuity. We present a rigorous framework for analyzing calibration measures, inspired by the literature on property testing. We propose a ground-truth notion of distance from calibration: the $\ell_1$ distance to the nearest perfectly calibrated predictor. We define a consistent calibration measure as one that is a polynomial factor approximation to the this distance. Applying our framework, we identify three calibration measures that are consistent and can be estimated efficiently: smooth calibration, interval calibration, and Laplace kernel calibration. The former two give quadratic approximations to the ground truth distance, which we show is information-theoretically optimal. Our work thus establishes fundamental lower and upper bounds on measuring distance to calibration, and also provides theoretical justification for preferring certain metrics (like Laplace kernel calibration) in practice.
Transfer learning uses a data model, trained to make predictions or inferences on data from one population, to make reliable predictions or inferences on data from another population. Most existing transfer learning approaches are based on fine-tuning pre-trained neural network models, and fail to provide crucial uncertainty quantification. We develop a statistical framework for model predictions based on transfer learning, called RECaST. The primary mechanism is a Cauchy random effect that recalibrates a source model to a target population; we mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models, in the sense that prediction sets will achieve their nominal stated coverage, and we numerically illustrate the method's robustness to asymptotic approximations for nonlinear models. Whereas many existing techniques are built on particular source models, RECaST is agnostic to the choice of source model. For example, our RECaST transfer learning approach can be applied to a continuous or discrete data model with linear or logistic regression, deep neural network architectures, etc. Furthermore, RECaST provides uncertainty quantification for predictions, which is mostly absent in the literature. We examine our method's performance in a simulation study and in an application to real hospital data.
Due to the noises in crowdsourced labels, label aggregation (LA) has emerged as a standard procedure to post-process crowdsourced labels. LA methods estimate true labels from crowdsourced labels by modeling worker qualities. Most existing LA methods are iterative in nature. They need to traverse all the crowdsourced labels multiple times in order to jointly and iteratively update true labels and worker qualities until convergence. Consequently, these methods have high space and time complexities. In this paper, we treat LA as a dynamic system and model it as a Dynamic Bayesian network. From the dynamic model we derive two light-weight algorithms, LA\textsuperscript{onepass} and LA\textsuperscript{twopass}, which can effectively and efficiently estimate worker qualities and true labels by traversing all the labels at most twice. Due to the dynamic nature, the proposed algorithms can also estimate true labels online without re-visiting historical data. We theoretically prove the convergence property of the proposed algorithms, and bound the error of estimated worker qualities. We also analyze the space and time complexities of the proposed algorithms and show that they are equivalent to those of majority voting. Experiments conducted on 20 real-world datasets demonstrate that the proposed algorithms can effectively and efficiently aggregate labels in both offline and online settings even if they traverse all the labels at most twice.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.