In this paper we refer to the Open Web to the set of services offered freely to Internet users, representing a pillar of modern societies. Despite its importance for society, it is unknown how the COVID-19 pandemic is affecting the Open Web. In this paper, we address this issue, focusing our analysis on Spain, one of the countries which have been most impacted by the pandemic. On the one hand, we study the impact of the pandemic in the financial backbone of the Open Web, the online advertising business. To this end, we leverage concepts from Supply-Demand economic theory to perform a careful analysis of the elasticity in the supply of ad-spaces to the financial shortage of the online advertising business and its subsequent reduction in ad spaces' price. On the other hand, we analyze the distribution of the Open Web composition across business categories and its evolution during the COVID-19 pandemic. These analyses are conducted between Jan 1st and Dec 31st, 2020, using a reference dataset comprising information from more than 18 billion ad spaces. Our results indicate that the Open Web has experienced a moderate shift in its composition across business categories. However, this change is not produced by the financial shortage of the online advertising business, because as our analysis shows, the Open Web's supply of ad spaces is inelastic (i.e., insensitive) to the sustained low-price of ad spaces during the pandemic. Instead, existing evidence suggests that the reported shift in the Open Web composition is likely due to the change in the users' online behavior (e.g., browsing and mobile apps utilization patterns).
While digital divide studies primarily focused on access to information and communications technology (ICT) in the past, its influence on other associated dimensions such as privacy is becoming critical with a far-reaching impact on the people and society. For example, the various levels of government legislation and compliance on information privacy worldwide have created a new era of digital divide in the privacy preservation domain. In this article, the concept "digital privacy divide (DPD)" is introduced to describe the perceived gap in the privacy preservation of individuals based on the geopolitical location of different countries. To better understand the DPD phenomenon, we created an online questionnaire and collected answers from more than 700 respondents from four different countries (the United States, Germany, Bangladesh, and India) who come from two distinct cultural orientations as per Hofstede's individualist vs. collectivist society. However, our results revealed some interesting findings. DPD does not depend on Hofstede's cultural orientation of the countries. For example, individuals residing in Germany and Bangladesh share similar privacy concerns, while there is a significant similarity among individuals residing in the United States and India. Moreover, while most respondents acknowledge the importance of privacy legislation to protect their digital privacy, they do not mind their governments to allow domestic companies and organizations collecting personal data on individuals residing outside their countries, if there are economic, employment, and crime prevention benefits. These results suggest a social dilemma in the perceived privacy preservation, which could be dependent on many other contextual factors beyond government legislation and countries' cultural orientation.
One of the most important incidents in the world in 2020 is the outbreak of the Coronavirus. Users on social networks publish a large number of comments about this event. These comments contain important hidden information of public opinion regarding this pandemic. In this research, a large number of Coronavirus-related tweets are considered and analyzed using natural language processing and information retrieval science. Initially, the location of the tweets is determined using a dictionary prepared through the Geo-Names geographic database, which contains detailed and complete information of places such as city names, streets, and postal codes. Then, using a large dictionary prepared from the terms of economics, related tweets are extracted and sentiments corresponded to tweets are analyzed with the help of the RoBERTa language-based model, which has high accuracy and good performance. Finally, the frequency chart of tweets related to the economy and their sentiment scores (positive and negative tweets) is plotted over time for the entire world and the top 10 economies. From the analysis of the charts, we learn that the reason for publishing economic tweets is not only the increase in the number of people infected with the Coronavirus but also imposed restrictions and lockdowns in countries. The consequences of these restrictions include the loss of millions of jobs and the economic downturn.
Since the World Health Organization announced the COVID-19 pandemic in March 2020, curbing the spread of the virus has become an international priority. It has greatly affected people's lifestyles. In this article, we observe and analyze the impact of the pandemic on people's lives using changes in smartphone application usage. First, through observing the daily usage change trends of all users during the pandemic, we can understand and analyze the effects of restrictive measures and policies during the pandemic on people's lives. In addition, it is also helpful for the government and health departments to take more appropriate restrictive measures in the case of future pandemics. Second, we defined the usage change features and found 9 different usage change patterns during the pandemic according to clusters of users and show the diversity of daily usage changes. It helps to understand and analyze the different impacts of the pandemic and restrictive measures on different types of people in more detail. Finally, according to prediction models, we discover the main related factors of each usage change type from user preferences and demographic information. It helps to predict changes in smartphone activity during future pandemics or when other restrictive measures are implemented, which may become a new indicator to judge and manage the risks of measures or events.
Attestation is a strong tool to verify the integrity of an untrusted system. However, in recent years, different attacks have appeared that are able to mislead the attestation process with treacherous practices as memory copy, proxy, and rootkit attacks, just to name a few. A successful attack leads to systems that are considered trusted by a verifier system, while the prover has bypassed the challenge. To mitigate these attacks against attestation methods and protocols, some proposals have considered the use of side-channel information that can be measured externally, as it is the case of electromagnetic (EM) emanation. Nonetheless, these methods require the physical proximity of an external setup to capture the EM radiation. In this paper, we present the possibility of performing attestation by using the side-channel information captured by a sensor or peripheral that lives in the same System-on-Chip (SoC) than the processor system (PS) which executes the operation that we aim to attest, by only sharing the Power Distribution Network (PDN). In our case, an analog-to-digital converter (ADC) that captures the voltage fluctuations at its input terminal while a certain operation is taking place is suitable to characterize itself and to distinguish it from other binaries. The resultant power traces are enough to clearly identify a given operation without the requirement of physical proximity.
Since the World Health Organization announced the COVID-19 pandemic in March 2020, curbing the spread of the virus has become an international priority. It has greatly affected people's lifestyles. In this article, we observe and analyze the impact of the pandemic on people's lives using changes in smartphone application usage. First, through observing the daily usage change trends of all users during the pandemic, we can understand and analyze the effects of restrictive measures and policies during the pandemic on people's lives. In addition, it is also helpful for the government and health departments to take more appropriate restrictive measures in the case of future pandemics. Second, we defined the usage change features and found 9 different usage change patterns during the pandemic according to clusters of users and show the diversity of daily usage changes. It helps to understand and analyze the different impacts of the pandemic and restrictive measures on different types of people in more detail. Finally, according to prediction models, we discover the main related factors of each usage change type from user preferences and demographic information. It helps to predict changes in smartphone activity during future pandemics or when other restrictive measures are implemented, which may become a new indicator to judge and manage the risks of measures or events.
Despite an increasing reliance on fully-automated algorithmic decision-making in our day-to-day lives, human beings still make highly consequential decisions. As frequently seen in business, healthcare, and public policy, recommendations produced by algorithms are provided to human decision-makers to guide their decisions. While there exists a fast-growing literature evaluating the bias and fairness of such algorithmic recommendations, an overlooked question is whether they help humans make better decisions. We develop a statistical methodology for experimentally evaluating the causal impacts of algorithmic recommendations on human decisions. We also show how to examine whether algorithmic recommendations improve the fairness of human decisions and derive the optimal decision rules under various settings. We apply the proposed methodology to preliminary data from the first-ever randomized controlled trial that evaluates the pretrial Public Safety Assessment (PSA) in the criminal justice system. A goal of the PSA is to help judges decide which arrested individuals should be released. On the basis of the preliminary data available, we find that providing the PSA to the judge has little overall impact on the judge's decisions and subsequent arrestee behavior. However, our analysis yields some potentially suggestive evidence that the PSA may help avoid unnecessarily harsh decisions for female arrestees regardless of their risk levels while it encourages the judge to make stricter decisions for male arrestees who are deemed to be risky. In terms of fairness, the PSA appears to increase the gender bias against males while having little effect on any existing racial differences in judges' decision. Finally, we find that the PSA's recommendations might be unnecessarily severe unless the cost of a new crime is sufficiently high.
Clustering is a fundamental problem in unsupervised machine learning, and fair variants of it have recently received significant attention due to its societal implications. In this work we introduce a novel definition of individual fairness for clustering problems. Specifically, in our model, each point $j$ has a set of other points $\mathcal{S}_j$ that it perceives as similar to itself, and it feels that it is fairly treated if the quality of service it receives in the solution is $\alpha$-close (in a multiplicative sense, for a given $\alpha \geq 1$) to that of the points in $\mathcal{S}_j$. We begin our study by answering questions regarding the structure of the problem, namely for what values of $\alpha$ the problem is well-defined, and what the behavior of the \emph{Price of Fairness (PoF)} for it is. For the well-defined region of $\alpha$, we provide efficient and easily-implementable approximation algorithms for the $k$-center objective, which in certain cases enjoy bounded-PoF guarantees. We finally complement our analysis by an extensive suite of experiments that validates the effectiveness of our theoretical results.
This paper has the goal of evaluating how changes in mobility has affected the infection spread of Covid-19 throughout the 2020-2021 years. However, identifying a "clean" causal relation is not an easy task due to a high number of non-observable (behavioral) effects. We suggest the usage of Google Trends and News-based indexes as controls for some of these behavioral effects and we find that a 1\% increase in residential mobility (i.e. a reduction in overall mobility) have significant impacts for reducing both Covid-19 cases (at least 3.02\% on a one-month horizon) and deaths (at least 2.43\% at the two-weeks horizon) over the 2020-2021 sample. We also evaluate the effects of mobility on Covid-19 spread on the restricted sample (only 2020) where vaccines were not available. The results of diminishing mobility over cases and deaths on the restricted sample are still observable (with similar magnitudes in terms of residential mobility) and cumulative higher, as the effects of restricting workplace mobility turns to be also significant: a 1\% decrease in workplace mobility diminishes cases around 1\% and deaths around 2\%.
Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.
This paper reconstructs the Freebase data dumps to understand the underlying ontology behind Google's semantic search feature. The Freebase knowledge base was a major Semantic Web and linked data technology that was acquired by Google in 2010 to support the Google Knowledge Graph, the backend for Google search results that include structured answers to queries instead of a series of links to external resources. After its shutdown in 2016, Freebase is contained in a data dump of 1.9 billion Resource Description Format (RDF) triples. A recomposition of the Freebase ontology will be analyzed in relation to concepts and insights from the literature on classification by Bowker and Star. This paper will explore how the Freebase ontology is shaped by many of the forces that also shape classification systems through a deep dive into the ontology and a small correlational study. These findings will provide a glimpse into the proprietary blackbox Knowledge Graph and what is meant by Google's mission to "organize the world's information and make it universally accessible and useful".