We study the recovery of functions in the uniform norm based on function evaluations. We obtain worst case error bounds for general classes of functions in terms of the best $L_2$-approximation from a given nested sequence of subspaces combined with bounds on the the Christoffel function of these subspaces. Besides an explicit bound, we obtain that linear algorithms using $n$ samples are optimal up to a factor $\sqrt{n}$ among all algorithms using arbitrary linear information. Moreover, our results imply that linear sampling algorithms are optimal up to a constant factor for many reproducing kernel Hilbert spaces. We also discuss results for approximation in more general seminorms, including $L_p$-approximation.
We study a class of Gaussian processes for which the posterior mean, for a particular choice of data, replicates a truncated Taylor expansion of any order. The data consist of derivative evaluations at the expansion point and the prior covariance kernel belongs to the class of Taylor kernels, which can be written in a certain power series form. We discuss and prove some results on maximum likelihood estimation of parameters of Taylor kernels. The proposed framework is a special case of Gaussian process regression based on data that is orthogonal in the reproducing kernel Hilbert space of the covariance kernel.
We study the continuous multi-reference alignment model of estimating a periodic function on the circle from noisy and circularly-rotated observations. Motivated by analogous high-dimensional problems that arise in cryo-electron microscopy, we establish minimax rates for estimating generic signals that are explicit in the dimension $K$. In a high-noise regime with noise variance $\sigma^2 \gtrsim K$, for signals with Fourier coefficients of roughly uniform magnitude, the rate scales as $\sigma^6$ and has no further dependence on the dimension. This rate is achieved by a bispectrum inversion procedure, and our analyses provide new stability bounds for bispectrum inversion that may be of independent interest. In a low-noise regime where $\sigma^2 \lesssim K/\log K$, the rate scales instead as $K\sigma^2$, and we establish this rate by a sharp analysis of the maximum likelihood estimator that marginalizes over latent rotations. A complementary lower bound that interpolates between these two regimes is obtained using Assouad's hypercube lemma. We extend these analyses also to signals whose Fourier coefficients have a slow power law decay.
This note shows how to compute, to high relative accuracy under mild assumptions, complex Jacobi rotations for diagonalization of Hermitian matrices of order two, using the correctly rounded functions $\mathtt{cr\_hypot}$ and $\mathtt{cr\_rsqrt}$, proposed for standardization in the C programming language as recommended by the IEEE-754 floating-point standard. The rounding to nearest (ties to even) and the non-stop arithmetic are assumed. The numerical examples compare the observed with theoretical bounds on the relative errors in the rotations' elements, and show that the maximal observed departure of the rotations' determinants from unity is smaller than that of the transformations computed by LAPACK.
We study the problem of computing the preimage of a set under a neural network with piecewise-affine activation functions. We recall an old result that the preimage of a polyhedral set is again a union of polyhedral sets and can be effectively computed. We show several applications of computing the preimage for analysis and interpretability of neural networks.
In the symbolic verification of cryptographic protocols, a central problem is deciding whether a protocol admits an execution which leaks a designated secret to the malicious intruder. Rusinowitch & Turuani (2003) show that, when considering finitely many sessions, this ``insecurity problem'' is NP-complete. Central to their proof strategy is the observation that any execution of a protocol can be simulated by one where the intruder only communicates terms of bounded size. However, when we consider models where, in addition to terms, one can also communicate logical statements about terms, the analysis of the insecurity problem becomes tricky when both these inference systems are considered together. In this paper we consider the insecurity problem for protocols with logical statements that include {\em equality on terms} and {\em existential quantification}. Witnesses for existential quantifiers may be unbounded, and obtaining small witness terms while maintaining equality proofs complicates the analysis considerably. We extend techniques from Rusinowitch & Turuani (2003) to show that this problem is also in NP.
Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for graphically illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time, and provide a Shiny app and R package as implementations of this tool. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as deep neural networks.
This research aims to develop kernel GNG, a kernelized version of the growing neural gas (GNG) algorithm, and to investigate the features of the networks generated by the kernel GNG. The GNG is an unsupervised artificial neural network that can transform a dataset into an undirected graph, thereby extracting the features of the dataset as a graph. The GNG is widely used in vector quantization, clustering, and 3D graphics. Kernel methods are often used to map a dataset to feature space, with support vector machines being the most prominent application. This paper introduces the kernel GNG approach and explores the characteristics of the networks generated by kernel GNG. Five kernels, including Gaussian, Laplacian, Cauchy, inverse multiquadric, and log kernels, are used in this study. The results of this study show that the average degree and the average clustering coefficient decrease as the kernel parameter increases for Gaussian, Laplacian, Cauchy, and IMQ kernels. If we avoid more edges and a higher clustering coefficient (or more triangles), the kernel GNG with a larger value of the parameter will be more appropriate.
This paper addresses the benefits of pooling data for shared learning in maintenance operations. We consider a set of systems subject to Poisson degradation that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs). We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. We leverage this decomposition to demonstrate that pooling data can lead to significant cost reductions compared to not pooling.
We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.