亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Metron, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Metron, discussing their strengths and weaknesses. Metron is available at //github.com/project-metron/metron.

相關內容

Prompting has become a practical method for utilizing pre-trained language models (LMs). This approach offers several advantages. It allows an LM to adapt to new tasks with minimal training and parameter updates, thus achieving efficiency in both storage and computation. Additionally, prompting modifies only the LM's inputs and harnesses the generative capabilities of language models to address various downstream tasks in a unified manner. This significantly reduces the need for human labor in designing task-specific models. These advantages become even more evident as the number of tasks served by the LM scales up. Motivated by the strengths of prompting, we are the first to explore the potential of prompting speech LMs in the domain of speech processing. Recently, there has been a growing interest in converting speech into discrete units for language modeling. Our pioneer research demonstrates that these quantized speech units are highly versatile within our unified prompting framework. Not only can they serve as class labels, but they also contain rich phonetic information that can be re-synthesized back into speech signals for speech generation tasks. Specifically, we reformulate speech processing tasks into speech-to-unit generation tasks. As a result, we can seamlessly integrate tasks such as speech classification, sequence generation, and speech generation within a single, unified prompting framework. The experiment results show that the prompting method can achieve competitive performance compared to the strong fine-tuning method based on self-supervised learning models with a similar number of trainable parameters. The prompting method also shows promising results in the few-shot setting. Moreover, with the advanced speech LMs coming into the stage, the proposed prompting framework attains great potential.

Large language models (LLMs) have demonstrated remarkable capabilities. Their powerful generative abilities enable flexible responses based on various queries or instructions. Emerging as widely adopted generalists for diverse tasks, LLMs are still vulnerable to backdoors. This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects. In our approach, we first leverage a language model to insert a trigger selected on fixed metrics into the input, then design a pipeline of model editing to directly embed a backdoor into an LLM. By adjusting a small set of local parameters with a mini-batch of samples, MEGen significantly enhances time efficiency and achieves high robustness. Experimental results indicate that our backdoor attack strategy achieves a high attack success rate on poison data while maintaining the model's performance on clean data. Notably, the backdoored model, when triggered, can freely output pre-set dangerous information while successfully completing downstream tasks. This suggests that future LLM applications could be guided to deliver certain dangerous information, thus altering the LLM's generative style. We believe this approach provides insights for future LLM applications and the execution of backdoor attacks on conversational AI systems.

The era of large deep learning models has given rise to advanced training strategies such as 3D parallelism and the ZeRO series. These strategies enable various (re-)configurable execution plans for a training job, which exhibit remarkably different requirements of multiple resource types. Existing cluster scheduling systems, however, treat such reconfigurable training jobs as black boxes: they rely on users to choose execution plans statically, and then make resource allocations without awareness of the chosen plans and their resource requirements. This approach results in mismatches between execution plans and resources, making both training performance and cluster utilization far from optimal. We introduce Rubick, a cluster scheduling system for deep learning training that exploits the reconfigurability to improve job performance and cluster efficiency. Rubick incorporates the job execution planning as a new dimension in cluster scheduling, by continuously reconfiguring jobs' execution plans and tuning multi-resource allocations across jobs jointly. Such a co-optimization is navigated by a performance model that understands the diverse resource requirements and performance characteristics of different jobs and execution plans. Rubick exploits such a model to make performance-aware scheduling decisions to maximize cluster throughput while providing performance guarantees to individual jobs. Evaluations on a 64-GPU high-performance training cluster show that Rubick improves average job completion time and makespan by up to 3.2x and 1.4x, respectively, compared against state-of-the-art systems.

Large language models have repeatedly shown outstanding performance across diverse applications. However, deploying these models can inadvertently risk user privacy. The significant memory demands during training pose a major challenge in terms of resource consumption. This substantial size places a heavy load on memory resources, raising considerable practical concerns. In this paper, we introduce DP-MemArc, a novel training framework aimed at reducing the memory costs of large language models while emphasizing the protection of user data privacy. DP-MemArc incorporates side network or reversible network designs to support a variety of differential privacy memory-efficient fine-tuning schemes. Our approach not only achieves in memory optimization but also ensures robust privacy protection, keeping user data secure and confidential. Extensive experiments have demonstrated that DP-MemArc effectively provides differential privacy-efficient fine-tuning across different task scenarios.

The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at \url{aka.ms/wavllm}.

Transformers have revolutionized deep learning and generative modeling to enable unprecedented advancements in natural language processing tasks and beyond. However, designing hardware accelerators for executing transformer models is challenging due to the wide variety of computing kernels involved in the transformer architecture. Existing accelerators are either inadequate to accelerate end-to-end transformer models or suffer notable thermal limitations. In this paper, we propose the design of a three-dimensional heterogeneous architecture referred to as HeTraX specifically optimized to accelerate end-to-end transformer models. HeTraX employs hardware resources aligned with the computational kernels of transformers and optimizes both performance and energy. Experimental results show that HeTraX outperforms existing state-of-the-art by up to 5.6x in speedup and improves EDP by 14.5x while ensuring thermally feasibility.

The widespread adoption of large language models (LLMs) has created a pressing need for an efficient, secure and private serving infrastructure, which allows researchers to run open source or custom fine-tuned LLMs and ensures users that their data remains private and is not stored without their consent. While high-performance computing (HPC) systems equipped with state-of-the-art GPUs are well-suited for training LLMs, their batch scheduling paradigm is not designed to support real-time serving of AI applications. Cloud systems, on the other hand, are well suited for web services but commonly lack access to the computational power of HPC clusters, especially expensive and scarce high-end GPUs, which are required for optimal inference speed. We propose an architecture with an implementation consisting of a web service that runs on a cloud VM with secure access to a scalable backend running a multitude of LLM models on HPC systems. By offering a web service using our HPC infrastructure to host LLMs, we leverage the trusted environment of local universities and research centers to offer a private and secure alternative to commercial LLM services. Our solution natively integrates with the HPC batch scheduler Slurm, enabling seamless deployment on HPC clusters, and is able to run side by side with regular Slurm workloads, while utilizing gaps in the schedule created by Slurm. In order to ensure the security of the HPC system, we use the SSH ForceCommand directive to construct a robust circuit breaker, which prevents successful attacks on the web-facing server from affecting the cluster. We have successfully deployed our system as a production service, and made the source code available at \url{//github.com/gwdg/chat-ai}

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

北京阿比特科技有限公司