亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give the first polynomial time and sample $(\epsilon, \delta)$-differentially private (DP) algorithm to estimate the mean, covariance and higher moments in the presence of a constant fraction of adversarial outliers. Our algorithm succeeds for families of distributions that satisfy two well-studied properties in prior works on robust estimation: certifiable subgaussianity of directional moments and certifiable hypercontractivity of degree 2 polynomials. Our recovery guarantees hold in the "right affine-invariant norms": Mahalanobis distance for mean, multiplicative spectral and relative Frobenius distance guarantees for covariance and injective norms for higher moments. Prior works obtained private robust algorithms for mean estimation of subgaussian distributions with bounded covariance. For covariance estimation, ours is the first efficient algorithm (even in the absence of outliers) that succeeds without any condition-number assumptions. Our algorithms arise from a new framework that provides a general blueprint for modifying convex relaxations for robust estimation to satisfy strong worst-case stability guarantees in the appropriate parameter norms whenever the algorithms produce witnesses of correctness in their run. We verify such guarantees for a modification of standard sum-of-squares (SoS) semidefinite programming relaxations for robust estimation. Our privacy guarantees are obtained by combining stability guarantees with a new "estimate dependent" noise injection mechanism in which noise scales with the eigenvalues of the estimated covariance. We believe this framework will be useful more generally in obtaining DP counterparts of robust estimators. Independently of our work, Ashtiani and Liaw [AL21] also obtained a polynomial time and sample private robust estimation algorithm for Gaussian distributions.

相關內容

In this work we consider the approximability of $\textsf{Max-CSP}(f)$ in the context of sketching algorithms and completely characterize the approximability of all Boolean CSPs. Specifically, given $f$, $\gamma$ and $\beta$ we show that either (1) the $(\gamma,\beta)$-approximation version of $\textsf{Max-CSP}(f)$ has a linear sketching algorithm using $O(\log n)$ space, or (2) for every $\epsilon > 0$ the $(\gamma-\epsilon,\beta+\epsilon)$-approximation version of $\textsf{Max-CSP}(f)$ requires $\Omega(\sqrt{n})$ space for any sketching algorithm. We also prove lower bounds against streaming algorithms for several CSPs. In particular, we recover the streaming dichotomy of [CGV20] for $k=2$ and show streaming approximation resistance of all CSPs for which $f^{-1}(1)$ supports a distribution with uniform marginals. Our positive results show wider applicability of bias-based algorithms used previously by [GVV17] and [CGV20] by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results.

In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). In this work, we present the first known $\epsilon$-approximation algorithm to compute NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\epsilon^{-4} k^8 \max\{a,b\})$ for arbitrary settings of these parameters. Moreover, this algorithm computes approximate coarse correlated equilibrium strategies in the multiplayer Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \epsilon^{-4} k^8 n + \ell^2 \epsilon^{-2} k^4 n)$, where $n$ is the maximum troop count. Before this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Further, this is the first algorithm to compute optimal strategies (exact or approximate) in the continuous Colonel Blotto game with arbitrary parameters. Our algorithm computes these approximate equilibria by a novel (to the author's knowledge) sampling technique with which we implicitly perform multiplicative weights update over the exponentially many strategies available to each player.

In this work, we extend the robust version of the Sylvester-Gallai theorem, obtained by Barak, Dvir, Wigderson and Yehudayoff, and by Dvir, Saraf and Wigderson, to the case of quadratic polynomials. Specifically, we prove that if $\mathcal{Q}\subset \mathbb{C}[x_1.\ldots,x_n]$ is a finite set, $|\mathcal{Q}|=m$, of irreducible quadratic polynomials that satisfy the following condition: There is $\delta>0$ such that for every $Q\in\mathcal{Q}$ there are at least $\delta m$ polynomials $P\in \mathcal{Q}$ such that whenever $Q$ and $P$ vanish then so does a third polynomial in $\mathcal{Q}\setminus\{Q,P\}$, then $\dim(\text{span}({\mathcal{Q}}))=\text{poly}(1/\delta)$. The work of Barak et al. and Dvir et al. studied the case of linear polynomials and proved an upper bound of $O(1/\delta)$ on the dimension (in the first work an upper bound of $O(1/\delta^2)$ was given, which was improved to $O(1/\delta)$ in the second work).

The stabilizer rank of a quantum state $\psi$ is the minimal $r$ such that $\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle$ for $c_j \in \mathbb{C}$ and stabilizer states $\varphi_j$. The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the $n$-th tensor power of single-qubit magic states. We prove a lower bound of $\Omega(n)$ on the stabilizer rank of such states, improving a previous lower bound of $\Omega(\sqrt{n})$ of Bravyi, Smith and Smolin (arXiv:1506.01396). Further, we prove that for a sufficiently small constant $\delta$, the stabilizer rank of any state which is $\delta$-close to those states is $\Omega(\sqrt{n}/\log n)$. This is the first non-trivial lower bound for approximate stabilizer rank. Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of $\mathbb{F}_2^n$, and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approximations and correlation bounds against the majority function.

Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.

We consider the lower bounds of differentially private empirical risk minimization (DP-ERM) for convex functions in constrained/unconstrained cases with respect to the general $\ell_p$ norm beyond the $\ell_2$ norm considered by most of the previous works. We provide a simple black-box reduction approach which can generalize lower bounds in constrained case to unconstrained case. For $(\epsilon,\delta)$-DP, we achieve $\Omega(\frac{\sqrt{d \log(1/\delta)}}{\epsilon n})$ lower bounds for both constrained and unconstrained cases and any $\ell_p$ geometry where $p\geq 1$ by introducing a novel biased mean property for fingerprinting codes, where $n$ is the size of the data-set and $d$ is the dimension.

Skills or low-level policies in reinforcement learning are temporally extended actions that can speed up learning and enable complex behaviours. Recent work in offline reinforcement learning and imitation learning has proposed several techniques for skill discovery from a set of expert trajectories. While these methods are promising, the number K of skills to discover is always a fixed hyperparameter, which requires either prior knowledge about the environment or an additional parameter search to tune it. We first propose a method for offline learning of options (a particular skill framework) exploiting advances in variational inference and continuous relaxations. We then highlight an unexplored connection between Bayesian nonparametrics and offline skill discovery, and show how to obtain a nonparametric version of our model. This version is tractable thanks to a carefully structured approximate posterior with a dynamically-changing number of options, removing the need to specify K. We also show how our nonparametric extension can be applied in other skill frameworks, and empirically demonstrate that our method can outperform state-of-the-art offline skill learning algorithms across a variety of environments. Our code is available at //github.com/layer6ai-labs/BNPO .

In the context of estimating stochastically ordered distribution functions, the pool-adjacent-violators algorithm (PAVA) can be modified such that the computation times are reduced substantially. This is achieved by studying the dependence of antitonic weighted least squares fits on the response vector to be approximated.

Sparse Principal Component Analysis (PCA) is a prevalent tool across a plethora of subfields of applied statistics. While several results have characterized the recovery error of the principal eigenvectors, these are typically in spectral or Frobenius norms. In this paper, we provide entrywise $\ell_{2,\infty}$ bounds for Sparse PCA under a general high-dimensional subgaussian design. In particular, our results hold for any algorithm that selects the correct support with high probability, those that are sparsistent. Our bound improves upon known results by providing a finer characterization of the estimation error, and our proof uses techniques recently developed for entrywise subspace perturbation theory.

We study ROUND-UFP and ROUND-SAP, two generalizations of the classical BIN PACKING problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of tasks where for each task we are given a demand and a subpath. In ROUND-UFP, the goal is to find a packing of all tasks into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of tasks on any edge does not exceed the capacity of the respective edge. In ROUND-SAP, the tasks are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to BIN PACKING, both the problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic $(2+\varepsilon)$-approximations for both problems. For the general case, we obtain an $O(\log\log n)$-approximation algorithm and an $O(\log\log\frac{1}{\delta})$-approximation under $(1+\delta)$-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum task demand is at most the minimum edge capacity), we obtain absolute $12$- and asymptotic $(16+\varepsilon)$-approximation algorithms for ROUND-UFP and ROUND-SAP, respectively.

北京阿比特科技有限公司