亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an optimal transport approach for mesh adaptivity and shock capturing of compressible flows. Shock capturing is based on a viscosity regularization of the governing equations by introducing an artificial viscosity field as solution of the Helmholtz equation. Mesh adaptation is based on the optimal transport theory by formulating a mesh mapping as solution of Monge-Ampere equation. The marriage of optimal transport and viscosity regularization for compressible flows leads to a coupled system of the compressible Euler/Navier-Stokes equations, the Helmholtz equation, and the Monge-Ampere equation. We propose an iterative procedure to solve the coupled system in a sequential fashion using homotopy continuation to minimize the amount of artificial viscosity while enforcing positivity-preserving and smoothness constraints on the numerical solution. We explore various mesh monitor functions for computing r-adaptive meshes in order to reduce the amount of artificial dissipation and improve the accuracy of the numerical solution. The hybridizable discontinuous Galerkin method is used for the spatial discretization of the governing equations to obtain high-order accurate solutions. Extensive numerical results are presented to demonstrate the optimal transport approach on transonic, supersonic, hypersonic flows in two dimensions. The approach is found to yield accurate, sharp yet smooth solutions within a few mesh adaptation iterations.

相關內容

A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of ``strong blockwise decomposability'' and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of ``strong uniformly blockwise decomposable'' constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.

The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of tau, the between-study standard deviation, and the shrunken estimates of the study effects as a function of tau. With a small or moderate number of studies, tau is not estimated with much precision, and parameter estimates and shrunken study effect estimates can vary widely depending on the correct value of tau. The trace plot allows visualization of the sensitivity to tau along with a plot that shows which values of tau are plausible and which are implausible. A comparable frequentist or empirical Bayes version provides similar results. The concepts are illustrated using examples in meta-analysis and meta-regression; implementaton in R is facilitated in a Bayesian or frequentist framework using the bayesmeta and metafor packages, respectively.

Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our decomposition is compatible with the projector-splitting integrator, and can therefore access second-order accuracy in time via a Strang splitting scheme. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as a second-order accurate integrator which exactly conserves charge and energy. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.

Orthogonal meta-learners, such as DR-learner, R-learner and IF-learner, are increasingly used to estimate conditional average treatment effects. They improve convergence rates relative to na\"{\i}ve meta-learners (e.g., T-, S- and X-learner) through de-biasing procedures that involve applying standard learners to specifically transformed outcome data. This leads them to disregard the possibly constrained outcome space, which can be particularly problematic for dichotomous outcomes: these typically get transformed to values that are no longer constrained to the unit interval, making it difficult for standard learners to guarantee predictions within the unit interval. To address this, we construct orthogonal meta-learners for the prediction of counterfactual outcomes which respect the outcome space. As such, the obtained i-learner or imputation-learner is more generally expected to outperform existing learners, even when the outcome is unconstrained, as we confirm empirically in simulation studies and an analysis of critical care data. Our development also sheds broader light onto the construction of orthogonal learners for other estimands.

Research intended to estimate the effect of an action, like in randomized trials, often do not have random samples of the intended target population. Instead, estimates can be transported to the desired target population. Methods for transporting between populations are often premised on a positivity assumption, such that all relevant covariate patterns in one population are also present in the other. However, eligibility criteria, particularly in the case of trials, can result in violations of positivity. To address nonpositivity, a synthesis of statistical and mechanistic models was previously proposed in the context of violations by a single binary covariate. Here, we extend the synthesis approach for positivity violations with a continuous covariate. For estimation, two novel augmented inverse probability weighting estimators are proposed, with one based on estimating the parameters of a marginal structural model and the other based on estimating the conditional average causal effect. Both estimators are compared to other common approaches to address nonpositivity via a simulation study. Finally, the competing approaches are illustrated with an example in the context of two-drug versus one-drug antiretroviral therapy on CD4 T cell counts among women with HIV.

Designing cable harnesses can be time-consuming and complex due to many design and manufacturing aspects and rules. Automating the design process can help to fulfil these rules, speed up the process, and optimize the design. To accommodate this, we formulate a harness routing optimization problem to minimize cable lengths, maximize bundling by rewarding shared paths, and optimize the cables' spatial location with respect to case-specific information of the routing environment, e.g., zones to avoid. A deterministic and computationally effective cable harness routing algorithm has been developed to solve the routing problem and is used to generate a set of cable harness topology candidates and approximate the Pareto front. Our approach was tested against a stochastic and an exact solver and our routing algorithm generated objective function values better than the stochastic approach and close to the exact solver. Our algorithm was able to find solutions, some of them being proven to be near-optimal, for three industrial-sized 3D cases within reasonable time (in magnitude of seconds to minutes) and the computation times were comparable to those of the stochastic approach.

Semidiscrete optimal transport is a challenging generalization of the classical transportation problem in linear programming. The goal is to design a joint distribution for two random variables (one continuous, one discrete) with fixed marginals, in a way that minimizes expected cost. We formulate a novel variant of this problem in which the cost functions are unknown, but can be learned through noisy observations; however, only one function can be sampled at a time. We develop a semi-myopic algorithm that couples online learning with stochastic approximation, and prove that it achieves optimal convergence rates, despite the non-smoothness of the stochastic gradient and the lack of strong concavity in the objective function.

Model order reduction (MOR) is an important step in the design process of integrated circuits. Specifically, the electromagnetic models extracted from modern complex designs result in a large number of passive elements that introduce limitations in the simulation process. MOR techniques based on balanced truncation (BT) can overcome these limitations by producing compact reduced-order models (ROMs) that approximate the behavior of the original models at the input/output ports. In this paper, we present a low-rank BT method that exploits the extended Krylov subspace and efficient implementation techniques for the reduction of large-scale models. Experimental evaluation on a diverse set of analog and mixed-signal circuits with millions of elements indicates that up to x5.5 smaller ROMs can be produced with similar accuracy to ANSYS RaptorX ROMs.

We introduce the notion of the Lie derivative in the context of dual quaternions that represent rigid motions and twists. First we define the wrench in terms of dual quaternions. Then we show how the Lie derivative helps understand how actuators affect an end effector in parallel robots, and make it explicit in the two cases case of Stewart Platforms, and cable-driven parallel robots. We also show how to use Lie derivatives with the Newton-Raphson Method to solve the forward kinematic problem for over constrained parallel actuators. Finally, we derive the equations of motion of the end effector in dual quaternion form, which include the effect of inertia from the actuators.

We study flow around a cylinder from a dynamics perspective, using drag and lift as indicators. We observe that the mean drag coefficient bifurcates from the steady case when the Karman vortex street emerges. We also find a jump in the dimension of the drag/lift attractor just above Reynolds number 100. We compare the simulated drag values with experimental data obtained over the last hundred years. Our simulations suggest that a vibrational resonance in the cylinder would be unlikely for Reynolds numbers greater than 1000, where the drag/lift behavior is fully chaotic.

北京阿比特科技有限公司