亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we extend the equal division and the equal surplus division values for transferable utility cooperative games to the more general setup of transferable utility cooperative games with a priori unions. In the case of the equal surplus division value we propose three possible extensions. We provide axiomatic characterizations of the new values. Furthermore, we apply the proposed modifications to a particular cost sharing problem and compare the numerical results with those obtained with the original values.

相關內容

We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon codes can be made to run in $\tilde{O}(n)$ time. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list decoding. It is known that for every $\epsilon>0$, and rate $r \in (0,1)$, there exist explicit families of these codes that have rate $r$ and can be list decoded from a $(1-r-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above list-decoding tasks in $\tilde{O}(n)$, where $n$ is the block-length of the code. Our algorithms have two main components. The first component builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a $\tilde{O}(n)$ time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design $\tilde{O}(n)$ time algorithms for two natural algebraic problems: given a $(m+2)$-variate polynomial $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i=0}^m Q_i(x)\cdot y_i$ the first algorithm solves order-$m$ linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ while the second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$, where $m$ is an arbitrary constant and $\gamma$ is a field element of sufficiently high order. These algorithms can be viewed as generalizations of classical $\tilde{O}(n)$ time algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.

We consider an extension of the classical Total Store Order (TSO) semantics by expanding it to turn-based 2-player safety games. During her turn, a player can select any of the communicating processes and perform its next transition. We consider different formulations of the safety game problem depending on whether one player or both of them transfer messages from the process buffers to the shared memory. We give the complete decidability picture for all the possible alternatives.

In this paper, without requiring any constraint qualifications, we establish tight error bounds for the log-determinant cone, which is the closure of the hypograph of the perspective function of the log-determinant function. This error bound is obtained using the recently developed framework based on one-step facial residual functions.

We propose a game-based formulation for learning dimensionality-reducing representations of feature vectors, when only a prior knowledge on future prediction tasks is available. In this game, the first player chooses a representation, and then the second player adversarially chooses a prediction task from a given class, representing the prior knowledge. The first player aims is to minimize, and the second player to maximize, the regret: The minimal prediction loss using the representation, compared to the same loss using the original features. For the canonical setting in which the representation, the response to predict and the predictors are all linear functions, and under the mean squared error loss function, we derive the theoretically optimal representation in pure strategies, which shows the effectiveness of the prior knowledge, and the optimal regret in mixed strategies, which shows the usefulness of randomizing the representation. For general representations and loss functions, we propose an efficient algorithm to optimize a randomized representation. The algorithm only requires the gradients of the loss function, and is based on incrementally adding a representation rule to a mixture of such rules.

Nowadays human interactions largely take place on social networks, with online users' behavior often falling into a few general typologies or "social roles". Among these, opinion leaders are of crucial importance as they have the ability to spread an idea or opinion on a large scale across the network, with possible tangible consequences in the real world. In this work we extract and characterize the different social roles of users within the Reddit WallStreetBets community, around the time of the GameStop short squeeze of January 2021 -- when a handful of committed users led the whole community to engage in a large and risky financial operation. We identify the profiles of both average users and of relevant outliers, including opinion leaders, using an iterative, semi-supervised classification algorithm, which allows us to discern the characteristics needed to play a particular social role. The key features of opinion leaders are large risky investments and constant updates on a single stock, which allowed them to attract a large following and, in the case of GameStop, ignite the interest of the community. Finally, we observe a substantial change in the behavior and attitude of users after the short squeeze event: no new opinion leaders are found and the community becomes less focused on investments. Overall, this work sheds light on the users' roles and dynamics that led to the GameStop short squeeze, while also suggesting why WallStreetBets no longer wielded such large influence on financial markets, in the aftermath of this event.

Off-policy evaluation (OPE) is the problem of estimating the value of a target policy using historical data collected under a different logging policy. OPE methods typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. In this work, we approach OPE without assuming either overlap or a well-specified model by considering a strategy based on partial identification under non-parametric assumptions on the conditional mean function, focusing especially on Lipschitz smoothness. Under such smoothness assumptions, we formulate a pair of linear programs whose optimal values upper and lower bound the contributions of the no-overlap region to the off-policy value. We show that these linear programs have a concise closed form solution that can be computed efficiently and that their solutions converge, under the Lipschitz assumption, to the sharp partial identification bounds on the off-policy value. Furthermore, we show that the rate of convergence is minimax optimal, up to log factors. We deploy our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without smoothness assumptions.

In this article we show that the asymptotic outcomes of both shallow and deep neural networks such as those used in BloombergGPT to generate economic time series are exactly the Nash equilibria of a non-potential game. We then design and analyze deep neural network algorithms that converge to these equilibria. The methodology is extended to federated deep neural networks between clusters of regional servers and on-device clients. Finally, the variational inequalities behind large language models including encoder-decoder related transformers are established.

The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.

This paper concerns an expansion of first-order Belnap-Dunn logic whose connectives and quantifiers are all familiar from classical logic. The language and logical consequence relation of the logic are defined, a proof system for the defined logic is presented, and the soundness and completeness of the presented proof system is established. The close relationship between the logical consequence relations of the defined logic and the version of classical logic with the same language is illustrated by the minor differences between the presented proof system and a sound and complete proof system for the version of classical logic with the same language. Moreover, fifteen classical laws of logical equivalence are given by which the logical equivalence relation of the defined logic distinguishes itself from the logical equivalence relation of many logics that are closely related at first glance.

In this paper, we address the critical challenges of double-spending and selfish mining attacks in blockchain-based digital currencies. Double-spending is a problem where the same tender is spent multiple times during a digital currency transaction, while selfish mining is an intentional alteration of a blockchain to increase rewards to one miner or a group of miners. We introduce a new attack that combines both these attacks and propose a machine learning-based solution to mitigate the risks associated with them. Specifically, we use the learning automaton, a powerful online learning method, to develop two models, namely the SDTLA and WVBM, which can effectively defend against selfish mining attacks. Our experimental results show that the SDTLA method increases the profitability threshold of selfish mining up to 47$\%$, while the WVBM method performs even better and is very close to the ideal situation where each miner's revenue is proportional to their shared hash processing power. Additionally, we demonstrate that both methods can effectively reduce the risks of double-spending by tuning the $Z$ Parameter. Our findings highlight the potential of SDTLA and WVBM as promising solutions for enhancing the security and efficiency of blockchain networks.

北京阿比特科技有限公司