亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on the meta distribution of electromagnetic field exposure (EMFE) experienced by a passive user in a cellular network implementing dynamic beamforming. The meta distribution serves as a valuable tool for extracting fine-grained insights into statistics of individual passive user EMFE across the network. A comprehensive stochastic geometry framework is established for this analysis. Given the pivotal role of accurately modeling the main and side lobes of antennas in this context, a multi-cosine gain model is introduced. The meta distribution is closely approximated by a beta distribution derived from its first- and second-order moments, which is demonstrated to be mathematically tractable. The impact of the number of antennas in the ULA on the meta distribution is explored, shedding light on its sensitivity to this parameter.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Quantum computing represents a revolutionary computational paradigm with the potential to address challenges beyond classical computers' capabilities. The development of robust quantum software is indispensable to unlock the full potential of quantum computing. Like classical software, quantum software is expected to be complex and extensive, needing the establishment of a specialized field known as Quantum Software Engineering. Recognizing the regional focus on Latin America within this special issue, we have boarded on an in-depth inquiry encompassing a systematic mapping study of existing literature and a comprehensive survey of experts in the field. This rigorous research effort aims to illuminate the current landscape of Quantum Software Engineering initiatives undertaken by universities, research institutes, and companies across Latin America. This exhaustive study aims to provide information on the progress, challenges, and opportunities in Quantum Software Engineering in the Latin American context. By promoting a more in-depth understanding of cutting-edge developments in this burgeoning field, our research aims to serve as a potential stimulus to initiate pioneering initiatives and encourage collaborative efforts among Latin American researchers.

Recommendation performance usually exhibits a long-tail distribution over users -- a small portion of head users enjoy much more accurate recommendation services than the others. We reveal two sources of this performance heterogeneity problem: the uneven distribution of historical interactions (a natural source); and the biased training of recommender models (a model source). As addressing this problem cannot sacrifice the overall performance, a wise choice is to eliminate the model bias while maintaining the natural heterogeneity. The key to debiased training lies in eliminating the effect of confounders that influence both the user's historical behaviors and the next behavior. The emerging causal recommendation methods achieve this by modeling the causal effect between user behaviors, however potentially neglect unobserved confounders (\eg, friend suggestions) that are hard to measure in practice. To address unobserved confounders, we resort to the front-door adjustment (FDA) in causal theory and propose a causal multi-teacher distillation framework (CausalD). FDA requires proper mediators in order to estimate the causal effects of historical behaviors on the next behavior. To achieve this, we equip CausalD with multiple heterogeneous recommendation models to model the mediator distribution. Then, the causal effect estimated by FDA is the expectation of recommendation prediction over the mediator distribution and the prior distribution of historical behaviors, which is technically achieved by multi-teacher ensemble. To pursue efficient inference, CausalD further distills multiple teachers into one student model to directly infer the causal effect for making recommendations.

The purpose of this research study was to study the influence of key psychological factors on emergence of Agile team autonomy that leads to Agile project success in software organizations.

The remarkable instruction-following capability of large language models (LLMs) has sparked a growing interest in automatically finding good prompts, i.e., prompt optimization. Most existing works follow the scheme of selecting from a pre-generated pool of candidate prompts. However, these designs mainly focus on the generation strategy, while limited attention has been paid to the selection method. Especially, the cost incurred during the selection (e.g., accessing LLM and evaluating the responses) is rarely explicitly considered. To overcome this limitation, this work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint. TRIPLE is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB); thus, it is capable of leveraging the rich toolbox from BAI-FB systematically and also incorporating unique characteristics of prompt optimization. Extensive experiments on multiple well-adopted tasks using various LLMs demonstrate the remarkable performance improvement of TRIPLE over baselines while satisfying the limited budget constraints. As an extension, variants of TRIPLE are proposed to efficiently select examples for few-shot prompts, also achieving superior empirical performance.

Symbolic Aggregate approXimation (SAX) is a common dimensionality reduction approach for time-series data which has been employed in a variety of domains, including classification and anomaly detection in time-series data. Domains also include shape recognition where the shape outline is converted into time-series data forinstance epoch classification of archived arrowheads. In this paper we propose a dimensionality reduction and shape recognition approach based on the SAX algorithm, an application which requires responses on cost efficient, IoT-like, platforms. The challenge is largely dealing with the computational expense of the SAX algorithm in IoT-like applications, from simple time-series dimension reduction through shape recognition. The approach is based on lowering the dimensional space while capturing and preserving the most representative features of the shape. We present three scenarios of increasing computational complexity backing up our statements with measurement of performance characteristics

This work investigates the performance of intelligent reflective surfaces (IRSs) assisted uplink non-orthogonal multiple access (NOMA) in energy-constrained networks. Specifically, we formulate and solve two optimization problems; the first aims at minimizing the sum of users' transmit power, while the second targets maximizing the system level energy efficiency (EE). The two problems are solved by jointly optimizing the users' transmit powers and the beamforming coefficients at IRS subject to the users' individual uplink rate and transmit power constraints. A novel and low complexity algorithm is developed to optimize the IRS beamforming coefficients by optimizing the objective function over a \textit{complex circle manifold} (CCM). To efficiently optimize the IRS phase shifts over the manifold, the optimization problem is reformulated into a feasibility expansion problem which is reduced to a max-min signal-plus-interference-ratio (SINR). Then, with the aid of a smoothing technique, the exact penalty method is applied to transform the problem from constrained to unconstrained. The proposed solution is compared against three semi-definite programming (SDP)-based benchmarks which are semi-definite relaxation (SDR), SDP-difference of convex (SDP-DC) and sequential rank-one constraint relaxation (SROCR). The results show that the manifold algorithm provides better performance than the SDP-based benchmarks, and at a much lower computational complexity for both the transmit power minimization and EE maximization problems. The results also reveal that IRS-NOMA is only superior to orthogonal multiple access (OMA) when the users' target achievable rate requirements are relatively high.

We propose a novel performance metric for articulated robots with distributed directional sensors called the sensor observability analysis (SOA). These robot-mounted distributed directional sensors (e.g., joint torque sensors) change their individual sensing directions as the joints move. SOA transforms individual sensors axes in joint space to provide the cumulative sensing quality of these sensors to observe each task-space axis, akin to forward kinematics for sensors. For example, certain joint configurations may align joint torque sensors in such a way that they are unable to observe interaction forces in one or more task-space axes. The resultant sensor observability performance metrics can then be used in optimization and in null-space control to avoid sensor observability singular configurations or to maximize sensor observability in particular directions. We use the specific case of force sensing in serial robot manipulators to showcase the analysis. Parallels are drawn between sensor observability and the traditional kinematic manipulability; SOA is shown to be more generalizable in terms of analysing non-joint-mounted sensors and can potentially be applied to sensor types other than for force sensing. Simulations and experiments using a custom 3-DOF robot and the Baxter robot demonstrate the utility and importance of sensor observability in physical interactions.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司