Joint relation modeling is a curial component in human motion prediction. Most existing methods rely on skeletal-based graphs to build the joint relations, where local interactive relations between joint pairs are well learned. However, the motion coordination, a global joint relation reflecting the simultaneous cooperation of all joints, is usually weakened because it is learned from part to whole progressively and asynchronously. Thus, the final predicted motions usually appear unrealistic. To tackle this issue, we learn a medium, called coordination attractor (CA), from the spatiotemporal features of motion to characterize the global motion features, which is subsequently used to build new relative joint relations. Through the CA, all joints are related simultaneously, and thus the motion coordination of all joints can be better learned. Based on this, we further propose a novel joint relation modeling module, Comprehensive Joint Relation Extractor (CJRE), to combine this motion coordination with the local interactions between joint pairs in a unified manner. Additionally, we also present a Multi-timescale Dynamics Extractor (MTDE) to extract enriched dynamics from the raw position information for effective prediction. Extensive experiments show that the proposed framework outperforms state-of-the-art methods in both short- and long-term predictions on H3.6M, CMU-Mocap, and 3DPW.
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
Molecular communication is a bio-inspired communication paradigm where molecules are used as the information carrier. This paper considers a molecular communication network where the transmitter uses concentration modulated signals for communication. Our focus is to design receivers that can demodulate these signals. We impose three features on our receivers. We want the receivers to use enzymatic cycles as their building blocks, have high input impedance and can work approximately as a maximum a posteriori (MAP) demodulator. No receivers with all these three features exist in the current molecular communication literature. We consider enzymatic cycles because they are a very common class of chemical reactions that are found in living cells. Since a receiver is to be placed in the communication environment, it should ideally have a high input impedance so that it has minimal impact on the environment and on other receivers. Lastly, a MAP receiver has good statistical performance. In this paper, we show how we can use time-scale separation to make an enzymatic cycle to have high input impedance and how the parameters of the enzymatic cycles can be chosen so that the receiver can approximately implement a MAP demodulator. We use simulation to study the performance of this receiver. In particular, we consider an environment with multiple receivers and show that a receiver has little impact on the bit error ratio of a nearby receiver because they have high input impedance.
We propose a local, past-oriented fragment of propositional dynamic logic to reason about concurrent scenarios modelled as Mazurkiewicz traces, and prove it to be expressively complete with respect to regular trace languages. Because of locality, specifications in this logic are efficiently translated into asynchronous automata, in a way that reflects the structure of formulas. In particular, we obtain a new proof of Zielonka's fundamental theorem and we prove that any regular trace language can be implemented by a cascade product of localized asynchronous automata, which essentially operate on a single process. These results refine earlier results by Adsul et al. which involved a larger fragment of past propositional dynamic logic and used Mukund and Sohoni's gossip automaton. Our new results avoid using this automaton, or Zielonka's timestamping mechanism and, in particular, they show how to implement a gossip automaton as a cascade product.
A new model is presented to predict hydrogen-assisted fatigue. The model combines a phase field description of fracture and fatigue, stress-assisted hydrogen diffusion, and a toughness degradation formulation with cyclic and hydrogen contributions. Hydrogen-assisted fatigue crack growth predictions exhibit an excellent agreement with experiments over all the scenarios considered, spanning multiple load ratios, H2 pressures and loading frequencies. These are obtained without any calibration with hydrogen-assisted fatigue data, taking as input only mechanical and hydrogen transport material properties, the material's fatigue characteristics (from a single test in air), and the sensitivity of fracture toughness to hydrogen content. Furthermore, the model is used to determine: (i) what are suitable test loading frequencies to obtain conservative data, and (ii) the underestimation made when not pre-charging samples. The model can handle both laboratory specimens and large-scale engineering components, enabling the Virtual Testing paradigm in infrastructure exposed to hydrogen environments and cyclic loading.
Deep neural network models for image segmentation can be a powerful tool for the automation of motor claims handling processes in the insurance industry. A crucial aspect is the reliability of the model outputs when facing adverse conditions, such as low quality photos taken by claimants to document damages. We explore the use of a meta-classification model to empirically assess the precision of segments predicted by a model trained for the semantic segmentation of car body parts. Different sets of features correlated with the quality of a segment are compared, and an AUROC score of 0.915 is achieved for distinguishing between high- and low-quality segments. By removing low-quality segments, the average mIoU of the segmentation output is improved by 16 percentage points and the number of wrongly predicted segments is reduced by 77%.
We study three kinetic Langevin samplers including the Euler discretization, the BU and the UBU splitting scheme. We provide contraction results in $L^1$-Wasserstein distance for non-convex potentials. These results are based on a carefully tailored distance function and an appropriate coupling construction. Additionally, the error in the $L^1$-Wasserstein distance between the true target measure and the invariant measure of the discretization scheme is bounded. To get an $\varepsilon$-accuracy in $L^1$-Wasserstein distance, we show complexity guarantees of order $\mathcal{O}(\sqrt{d}/\varepsilon)$ for the Euler scheme and $\mathcal{O}(d^{1/4}/\sqrt{\varepsilon})$ for the UBU scheme under appropriate regularity assumptions on the target measure. The results are applicable to interacting particle systems and provide bounds for sampling probability measures of mean-field type.
Finite discrete-time dynamical systems (FDDS) model phenomena that evolve deterministically in discrete time. It is possible to define sum and product operations on these systems (disjoint union and direct product, respectively) giving a commutative semiring. This algebraic structure led to several works employing polynomial equations to model hypotheses on phenomena modelled using FDDS. To solve these equations, algorithms for performing the division and computing $k$-th roots are needed. In this paper, we propose two polynomial algorithms for these tasks, under the condition that the result is a connected FDDS. This ultimately leads to an efficient solution to equations of the type $AX^k=B$ for connected $X$. These results are some of the important final steps for solving more general polynomial equations on FDDS.
The diffusion of charged particles in a graph can be modeled using random walks on a weighted graph. We give strategies to hide (or cloak) changes in a subgraph from the perspective of measurements of expected net particle charges made at nodes away from the cloaked subgraph. We distinguish between passive and active strategies, depending on whether the strategy involves injecting particles. The passive strategy can hide topology and edge weight changes. In addition to these capabilities, the active strategy can also hide sources of particles, at the cost of prior knowledge of the expected net particle charges in the reference graph. The strategies we present rely on discrete analogues of classic potential theory, that include a Calder\'on calculus on graphs.
Bayesian sampling is an important task in statistics and machine learning. Over the past decade, many ensemble-type sampling methods have been proposed. In contrast to the classical Markov chain Monte Carlo methods, these new methods deploy a large number of interactive samples, and the communication between these samples is crucial in speeding up the convergence. To justify the validity of these sampling strategies, the concept of interacting particles naturally calls for the mean-field theory. The theory establishes a correspondence between particle interactions encoded in a set of coupled ODEs/SDEs and a PDE that characterizes the evolution of the underlying distribution. This bridges numerical algorithms with the PDE theory used to show convergence in time. Many mathematical machineries are developed to provide the mean-field analysis, and we showcase two such examples: The coupling method and the compactness argument built upon the martingale strategy. The former has been deployed to show the convergence of ensemble Kalman sampler and ensemble Kalman inversion, and the latter will be shown to be immensely powerful in proving the validity of the Vlasov-Boltzmann simulator.
Within Bayesian nonparametrics, dependent Dirichlet process mixture models provide a highly flexible approach for conducting inference about the conditional density function. However, several formulations of this class make either rather restrictive modelling assumptions or involve intricate algorithms for posterior inference, thus preventing their widespread use. In response to these challenges, we present a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. We assume an additive structure for the mean of each mixture component and incorporate the effects of continuous covariates through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. Our proposed method also seamlessly accommodates parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects, which is why we refer our model as a Dirichlet process mixture of normal structured additive regression models. A noteworthy feature of our method is its efficiency in posterior simulation through Gibbs sampling, as closed-form full conditional distributions for all model parameters are available. Results from a simulation study demonstrate that our approach successfully recovers true conditional densities and other regression functionals in various challenging scenarios. Applications to a toxicology, disease diagnosis, and agricultural study are provided and further underpin the broad applicability of our modelling framework. An R package, DDPstar, implementing the proposed method is publicly available at //bitbucket.org/mxrodriguez/ddpstar.