亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural network models for image segmentation can be a powerful tool for the automation of motor claims handling processes in the insurance industry. A crucial aspect is the reliability of the model outputs when facing adverse conditions, such as low quality photos taken by claimants to document damages. We explore the use of a meta-classification model to empirically assess the precision of segments predicted by a model trained for the semantic segmentation of car body parts. Different sets of features correlated with the quality of a segment are compared, and an AUROC score of 0.915 is achieved for distinguishing between high- and low-quality segments. By removing low-quality segments, the average mIoU of the segmentation output is improved by 16 percentage points and the number of wrongly predicted segments is reduced by 77%.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Current physics-informed (standard or deep operator) neural networks still rely on accurately learning the initial and/or boundary conditions of the system of differential equations they are solving. In contrast, standard numerical methods involve such conditions in computations without needing to learn them. In this study, we propose to improve current physics-informed deep learning strategies such that initial and/or boundary conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a deep operator network is applied multiple times to time-step a solution of an initial value problem, the resulting function is at least continuous.

Various methods have emerged for conducting mediation analyses with multiple correlated mediators, each with distinct strengths and limitations. However, a comparative evaluation of these methods is lacking, providing the motivation for this paper. This study examines six mediation analysis methods for multiple correlated mediators that provide insights to the contributors for health disparities. We assessed the performance of each method in identifying joint or path-specific mediation effects in the context of binary outcome variables varying mediator types and levels of residual correlation between mediators. Through comprehensive simulations, the performance of six methods in estimating joint and/or path-specific mediation effects was assessed rigorously using a variety of metrics including bias, mean squared error, coverage and width of the 95$\%$ confidence intervals. Subsequently, these methods were applied to the REasons for Geographic And Racial Differences in Stroke (REGARDS) study, where differing conclusions were obtained depending on the mediation method employed. This evaluation provides valuable guidance for researchers grappling with complex multi-mediator scenarios, enabling them to select an optimal mediation method for their research question and dataset.

Structural identifiability is an important property of parametric ODE models. When conducting an experiment and inferring the parameter value from the time-series data, we want to know if the value is globally, locally, or non-identifiable. Global identifiability of the parameter indicates that there exists only one possible solution to the inference problem, local identifiability suggests that there could be several (but finitely many) possibilities, while non-identifiability implies that there are infinitely many possibilities for the value. Having this information is useful since, one would, for example, only perform inferences for the parameters which are identifiable. Given the current significance and widespread research conducted in this area, we decided to create a database of linear compartment models and their identifiability results. This facilitates the process of checking theorems and conjectures and drawing conclusions on identifiability. By only storing models up to symmetries and isomorphisms, we optimize memory efficiency and reduce query time. We conclude by applying our database to real problems. We tested a conjecture about deleting one leak of the model states in the paper 'Linear compartmental models: Input-output equations and operations that preserve identifiability' by E. Gross et al., and managed to produce a counterexample. We also compute some interesting statistics related to the identifiability of linear compartment model parameters.

Aerodynamic optimal design is crucial for enhancing performance of aircrafts, while calculating multi-target functionals through solving dual equations with arbitrary right-hand sides remains challenging. In this paper, a novel multi-target framework of DWR-based mesh refinement is proposed and analyzed. Theoretically, an extrapolation method is generalized to expand multi-variable functionals, which guarantees the dual equations of different objective functionals can be calculated separately. Numerically, an algorithm of calculating multi-target functionals is designed based on the multi-mesh approach, which can help to obtain different dual solutions simultaneously. One feature of our framework is the algorithm is easy to implement with the help of the hierarchical geometry tree structure and the calculation avoids the Galerkin orthogonality naturally. The framework takes a balance between different targets even when they are not the same orders of magnitude. While existing approach uses a linear combination of different components in multi-target functionals for adaptation, it introduces additional coefficients for adjusting. With each component calculated under a dual-consistent scheme, this multi-mesh framework addresses challenges such as the lift-drag ratio and other kinds of multi-target functionals, ensuring smooth convergence and precise calculations of dual solutions.

Estimating parameters of a diffusion process given continuous-time observations of the process via maximum likelihood approaches or, online, via stochastic gradient descent or Kalman filter formulations constitutes a well-established research area. It has also been established previously that these techniques are, in general, not robust to perturbations in the data in the form of temporal correlations. While the subject is relatively well understood and appropriate modifications have been suggested in the context of multi-scale diffusion processes and their reduced model equations, we consider here an alternative setting where a second-order diffusion process in positions and velocities is only observed via its positions. In this note, we propose a simple modification to standard stochastic gradient descent and Kalman filter formulations, which eliminates the arising systematic estimation biases. The modification can be extended to standard maximum likelihood approaches and avoids computation of previously proposed correction terms.

We propose a test for the identification of causal effects in mediation and dynamic treatment models that is based on two sets of observed variables, namely covariates to be controlled for and suspected instruments, building on the test by Huber and Kueck (2022) for single treatment models. We consider models with a sequential assignment of a treatment and a mediator to assess the direct treatment effect (net of the mediator), the indirect treatment effect (via the mediator), or the joint effect of both treatment and mediator. We establish testable conditions for identifying such effects in observational data. These conditions jointly imply (1) the exogeneity of the treatment and the mediator conditional on covariates and (2) the validity of distinct instruments for the treatment and the mediator, meaning that the instruments do not directly affect the outcome (other than through the treatment or mediator) and are unconfounded given the covariates. Our framework extends to post-treatment sample selection or attrition problems when replacing the mediator by a selection indicator for observing the outcome, enabling joint testing of the selectivity of treatment and attrition. We propose a machine learning-based test to control for covariates in a data-driven manner and analyze its finite sample performance in a simulation study. Additionally, we apply our method to Slovak labor market data and find that our testable implications are not rejected for a sequence of training programs typically considered in dynamic treatment evaluations.

Use of explicit integration methods for power electronic circuits with ideal switch models significantly improves simulation speed. The PLECS package [1] has effectively used this idea; however, the implementation details involved in PLECS are not available in the public domain. Recently, a basic framework, called the ``ELEX" scheme, for implementing explicit methods has been described [2]. A few modifications of the ELEX scheme for efficient handling of inductors and switches have been presented in [3]. In this paper, the approach presented in [3] is further augmented with robust schemes that enable systematic equation formulation for circuits involving switches, inductors, and transformers. Several examples are presented to illustrate the proposed schemes.

Gesture is an important mean of non-verbal communication, with visual modality allows human to convey information during interaction, facilitating peoples and human-machine interactions. However, it is considered difficult to automatically recognise gestures. In this work, we explore three different means to recognise hand signs using deep learning: supervised learning based methods, self-supervised methods and visualisation based techniques applied to 3D moving skeleton data. Self-supervised learning used to train fully connected, CNN and LSTM method. Then, reconstruction method is applied to unlabelled data in simulated settings using CNN as a backbone where we use the learnt features to perform the prediction in the remaining labelled data. Lastly, Grad-CAM is applied to discover the focus of the models. Our experiments results show that supervised learning method is capable to recognise gesture accurately, with self-supervised learning increasing the accuracy in simulated settings. Finally, Grad-CAM visualisation shows that indeed the models focus on relevant skeleton joints on the associated gesture.

Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion or diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary Partial Differential Equations containing such operators and integrated in time with exponential integrators, it is then of paramount importance to efficiently approximate the actions of $\varphi$-functions of the arising matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (the so-called $\mu$-mode product and related Tucker operator, realized in practice with high performance level 3 BLAS), and allow for the effective usage of exponential Runge--Kutta integrators up to order three. The technique can also be efficiently implemented on modern computer hardware such as Graphic Processing Units. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D Schnakenberg and the 3D FitzHugh--Nagumo systems, on different hardware and software architectures.

Inner products of neural network feature maps arise in a wide variety of machine learning frameworks as a method of modeling relations between inputs. This work studies the approximation properties of inner products of neural networks. It is shown that the inner product of a multi-layer perceptron with itself is a universal approximator for symmetric positive-definite relation functions. In the case of asymmetric relation functions, it is shown that the inner product of two different multi-layer perceptrons is a universal approximator. In both cases, a bound is obtained on the number of neurons required to achieve a given accuracy of approximation. In the symmetric case, the function class can be identified with kernels of reproducing kernel Hilbert spaces, whereas in the asymmetric case the function class can be identified with kernels of reproducing kernel Banach spaces. Finally, these approximation results are applied to analyzing the attention mechanism underlying Transformers, showing that any retrieval mechanism defined by an abstract preorder can be approximated by attention through its inner product relations. This result uses the Debreu representation theorem in economics to represent preference relations in terms of utility functions.

北京阿比特科技有限公司