亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In existing visual representation learning tasks, deep convolutional neural networks (CNNs) are often trained on images annotated with single tags, such as ImageNet. However, a single tag cannot describe all important contents of one image, and some useful visual information may be wasted during training. In this work, we propose to train CNNs from images annotated with multiple tags, to enhance the quality of visual representation of the trained CNN model. To this end, we build a large-scale multi-label image database with 18M images and 11K categories, dubbed Tencent ML-Images. We efficiently train the ResNet-101 model with multi-label outputs on Tencent ML-Images, taking 90 hours for 60 epochs, based on a large-scale distributed deep learning framework,i.e.,TFplus. The good quality of the visual representation of the Tencent ML-Images checkpoint is verified through three transfer learning tasks, including single-label image classification on ImageNet and Caltech-256, object detection on PASCAL VOC 2007, and semantic segmentation on PASCAL VOC 2012. The Tencent ML-Images database, the checkpoints of ResNet-101, and all the training codehave been released at //github.com/Tencent/tencent-ml-images. It is expected to promote other vision tasks in the research and industry community.

相關內容

表示學習是通過利用訓練數據來學習得到向量表示,這可以克服人工方法的局限性。 表示學習通常可分為兩大類,無監督和有監督表示學習。大多數無監督表示學習方法利用自動編碼器(如去噪自動編碼器和稀疏自動編碼器等)中的隱變量作為表示。 目前出現的變分自動編碼器能夠更好的容忍噪聲和異常值。 然而,推斷給定數據的潛在結構幾乎是不可能的。 目前有一些近似推斷的策略。 此外,一些無監督表示學習方法旨在近似某種特定的相似性度量。提出了一種無監督的相似性保持表示學習框架,該框架使用矩陣分解來保持成對的DTW相似性。 通過學習保持DTW的shaplets,即在轉換后的空間中的歐式距離近似原始數據的真實DTW距離。有監督表示學習方法可以利用數據的標簽信息,更好地捕獲數據的語義結構。 孿生網絡和三元組網絡是目前兩種比較流行的模型,它們的目標是最大化類別之間的距離并最小化了類別內部的距離。

The combination of visual and textual representations has produced excellent results in tasks such as image captioning and visual question answering, but the inference capabilities of multimodal representations are largely untested. In the case of textual representations, inference tasks such as Textual Entailment and Semantic Textual Similarity have been often used to benchmark the quality of textual representations. The long term goal of our research is to devise multimodal representation techniques that improve current inference capabilities. We thus present a novel task, Visual Semantic Textual Similarity (vSTS), where such inference ability can be tested directly. Given two items comprised each by an image and its accompanying caption, vSTS systems need to assess the degree to which the captions in context are semantically equivalent to each other. Our experiments using simple multimodal representations show that the addition of image representations produces better inference, compared to text-only representations. The improvement is observed both when directly computing the similarity between the representations of the two items, and when learning a siamese network based on vSTS training data. Our work shows, for the first time, the successful contribution of visual information to textual inference, with ample room for benchmarking more complex multimodal representation options.

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

In this paper, we describe how to apply image-to-image translation techniques to medical blood smear data to generate new data samples and meaningfully increase small datasets. Specifically, given the segmentation mask of the microscopy image, we are able to generate photorealistic images of blood cells which are further used alongside real data during the network training for segmentation and object detection tasks. This image data generation approach is based on conditional generative adversarial networks which have proven capabilities to high-quality image synthesis. In addition to synthesizing blood images, we synthesize segmentation mask as well which leads to a diverse variety of generated samples. The effectiveness of the technique is thoroughly analyzed and quantified through a number of experiments on a manually collected and annotated dataset of blood smear taken under a microscope.

As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

Learning compact representation is vital and challenging for large scale multimedia data. Cross-view/cross-modal hashing for effective binary representation learning has received significant attention with exponentially growing availability of multimedia content. Most existing cross-view hashing algorithms emphasize the similarities in individual views, which are then connected via cross-view similarities. In this work, we focus on the exploitation of the discriminative information from different views, and propose an end-to-end method to learn semantic-preserving and discriminative binary representation, dubbed Discriminative Cross-View Hashing (DCVH), in light of learning multitasking binary representation for various tasks including cross-view retrieval, image-to-image retrieval, and image annotation/tagging. The proposed DCVH has the following key components. First, it uses convolutional neural network (CNN) based nonlinear hashing functions and multilabel classification for both images and texts simultaneously. Such hashing functions achieve effective continuous relaxation during training without explicit quantization loss by using Direct Binary Embedding (DBE) layers. Second, we propose an effective view alignment via Hamming distance minimization, which is efficiently accomplished by bit-wise XOR operation. Extensive experiments on two image-text benchmark datasets demonstrate that DCVH outperforms state-of-the-art cross-view hashing algorithms as well as single-view image hashing algorithms. In addition, DCVH can provide competitive performance for image annotation/tagging.

Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation.Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0% (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: //github.com/Hwang64/MLKP.

Robust cross-seasonal localization is one of the major challenges in long-term visual navigation of autonomous vehicles. In this paper, we exploit recent advances in semantic segmentation of images, i.e., where each pixel is assigned a label related to the type of object it represents, to solve the problem of long-term visual localization. We show that semantically labeled 3D point maps of the environment, together with semantically segmented images, can be efficiently used for vehicle localization without the need for detailed feature descriptors (SIFT, SURF, etc.). Thus, instead of depending on hand-crafted feature descriptors, we rely on the training of an image segmenter. The resulting map takes up much less storage space compared to a traditional descriptor based map. A particle filter based semantic localization solution is compared to one based on SIFT-features, and even with large seasonal variations over the year we perform on par with the larger and more descriptive SIFT-features, and are able to localize with an error below 1 m most of the time.

北京阿比特科技有限公司