亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose NEMTO, the first end-to-end neural rendering pipeline to model 3D transparent objects with complex geometry and unknown indices of refraction. Commonly used appearance modeling such as the Disney BSDF model cannot accurately address this challenging problem due to the complex light paths bending through refractions and the strong dependency of surface appearance on illumination. With 2D images of the transparent object as input, our method is capable of high-quality novel view and relighting synthesis. We leverage implicit Signed Distance Functions (SDF) to model the object geometry and propose a refraction-aware ray bending network to model the effects of light refraction within the object. Our ray bending network is more tolerant to geometric inaccuracies than traditional physically-based methods for rendering transparent objects. We provide extensive evaluations on both synthetic and real-world datasets to demonstrate our high-quality synthesis and the applicability of our method.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Neural Networks · Continuity · PAR · state-of-the-art ·
2023 年 5 月 11 日

In this paper, we propose an approach for cardiac magnetic resonance imaging (MRI), which aims to reconstruct a real-time video of a beating heart from continuous highly under-sampled measurements. This task is challenging since the object to be reconstructed (the heart) is continuously changing during signal acquisition. To address this challenge, we represent the beating heart with an implicit neural network and fit the network so that the representation of the heart is consistent with the measurements. The network in the form of a multi-layer perceptron with Fourier-feature inputs acts as an effective signal prior and enables adjusting the regularization strength in both the spatial and temporal dimensions of the signal. We examine the proposed approach for 2D free-breathing cardiac real-time MRI in different operating regimes, i.e., for different image resolutions, slice thicknesses, and acquisition lengths. Our method achieves reconstruction quality on par with or slightly better than state-of-the-art untrained convolutional neural networks and superior image quality compared to a recent method that fits an implicit representation directly to Fourier-domain measurements. However, this comes at a higher computational cost. Our approach does not require any additional patient data or biosensors including electrocardiography, making it potentially applicable in a wide range of clinical scenarios.

Recent developments in robotic and sensor hardware make data collection with mobile robots (ground or aerial) feasible and affordable to a wide population of users. The newly emergent applications, such as precision agriculture, weather damage assessment, or personal home security often do not satisfy the simplifying assumptions made by previous research: the explored areas have complex shapes and obstacles, multiple phenomena need to be sensed and estimated simultaneously and the measured quantities might change during observations. The future progress of path planning and estimation algorithms requires a new generation of benchmarks that provide representative environments and scoring methods that capture the demands of these applications. This paper describes the Waterberry Farms benchmark (WBF) that models a precision agriculture application at a Florida farm growing multiple crop types. The benchmark captures the dynamic nature of the spread of plant diseases and variations of soil humidity while the scoring system measures the performance of a given combination of a movement policy and an information model estimator. By benchmarking several examples of representative path planning and estimator algorithms, we demonstrate WBF's ability to provide insight into their properties and quantify future progress.

We present IndoorSim-to-OutdoorReal (I2O), an end-to-end learned visual navigation approach, trained solely in simulated short-range indoor environments, and demonstrates zero-shot sim-to-real transfer to the outdoors for long-range navigation on the Spot robot. Our method uses zero real-world experience (indoor or outdoor), and requires the simulator to model no predominantly-outdoor phenomenon (sloped grounds, sidewalks, etc). The key to I2O transfer is in providing the robot with additional context of the environment (i.e., a satellite map, a rough sketch of a map by a human, etc.) to guide the robot's navigation in the real-world. The provided context-maps do not need to be accurate or complete -- real-world obstacles (e.g., trees, bushes, pedestrians, etc.) are not drawn on the map, and openings are not aligned with where they are in the real-world. Crucially, these inaccurate context-maps provide a hint to the robot about a route to take to the goal. We find that our method that leverages Context-Maps is able to successfully navigate hundreds of meters in novel environments, avoiding novel obstacles on its path, to a distant goal without a single collision or human intervention. In comparison, policies without the additional context fail completely. Lastly, we test the robustness of the Context-Map policy by adding varying degrees of noise to the map in simulation. We find that the Context-Map policy is surprisingly robust to noise in the provided context-map. In the presence of significantly inaccurate maps (corrupted with 50% noise, or entirely blank maps), the policy gracefully regresses to the behavior of a policy with no context. Videos are available at //www.joannetruong.com/projects/i2o.html

Routing in wireless meshes must detour around holes. Extant routing protocols often underperform in minimally connected networks where holes are larger and more frequent. Minimal density networks are common in practice due to deployment cost constraints, mobility dynamics, and/or adversarial jamming. Protocols that use global search to determine optimal paths incur search overhead that limits scaling. Conversely, protocols that use local search tend to find approximately optimal paths at higher densities due to the existence of geometrically direct routes but underperform as the connectivity lowers and regional (or global) information is required to address holes. Designing a routing protocol to achieve high throughput-latency performance across network densities, mobility, and interference dynamics remains challenging. This paper shows that, in a probabilistic setting, bounded exploration can be leveraged to mitigate this challenge. We show, first, that the length of shortest paths in networks with uniform random node distribution can, with high probability (whp), be bounded. Thus, whp a shortest path may be found by limiting exploration to an elliptic region whose size is a function of the network density and the Euclidean distance between the two endpoints. Second, we propose a geographic routing protocol that achieves high reliability and throughput-latency performance by forwarding packets within an ellipse whose size is bounded similarly and by an estimate of the available capacity. Our protocol, QF-Geo, selects forwarding relays within the elliptic region, prioritizing those with sufficient capacity to avoid bottlenecks. Our simulation results show that QF-Geo achieves high goodput efficiency and reliability in both static and mobile networks across both low and high densities, at large scales, with a wide range of concurrent flows, and in the presence of adversarial jamming.

Statistical Shape Modeling (SSM) is a valuable tool for investigating and quantifying anatomical variations within populations of anatomies. However, traditional correspondence-based SSM generation methods require a time-consuming re-optimization process each time a new subject is added to the cohort, making the inference process prohibitive for clinical research. Additionally, they require complete geometric proxies (e.g., high-resolution binary volumes or surface meshes) as input shapes to construct the SSM. Unordered 3D point cloud representations of shapes are more easily acquired from various medical imaging practices (e.g., thresholded images and surface scanning). Point cloud deep networks have recently achieved remarkable success in learning permutation-invariant features for different point cloud tasks (e.g., completion, semantic segmentation, classification). However, their application to learning SSM from point clouds is to-date unexplored. In this work, we demonstrate that existing point cloud encoder-decoder-based completion networks can provide an untapped potential for SSM, capturing population-level statistical representations of shapes while reducing the inference burden and relaxing the input requirement. We discuss the limitations of these techniques to the SSM application and suggest future improvements. Our work paves the way for further exploration of point cloud deep learning for SSM, a promising avenue for advancing shape analysis literature and broadening SSM to diverse use cases.

This study explores the vaccine prioritization strategy to reduce the overall burden of the pandemic when the supply is limited. Existing methods conduct macro-level or simplified micro-level vaccine distribution by assuming the homogeneous behavior within subgroup populations and lacking mobility dynamics integration. Directly applying these models for micro-level vaccine allocation leads to sub-optimal solutions due to the lack of behavioral-related details. To address the issue, we first incorporate the mobility heterogeneity in disease dynamics modeling and mimic the disease evolution process using a Trans-vaccine-SEIR model. Then we develop a novel deep reinforcement learning to seek the optimal vaccine allocation strategy for the high-degree spatial-temporal disease evolution system. The graph neural network is used to effectively capture the structural properties of the mobility contact network and extract the dynamic disease features. In our evaluation, the proposed framework reduces 7% - 10% of infections and deaths than the baseline strategies. Extensive evaluation shows that the proposed framework is robust to seek the optimal vaccine allocation with diverse mobility patterns in the micro-level disease evolution system. In particular, we find the optimal vaccine allocation strategy in the transit usage restriction scenario is significantly more effective than restricting cross-zone mobility for the top 10% age-based and income-based zones. These results provide valuable insights for areas with limited vaccines and low logistic efficacy.

Communication complexity is the amount of communication needed to compute a function when the function inputs are distributed over multiple parties. In its simplest form, one-way communication complexity, Alice and Bob compute a function $f(x,y)$, where $x$ is given to Alice and $y$ is given to Bob, and only one message from Alice to Bob is allowed. A fundamental question in quantum information is the relationship between one-way quantum and classical communication complexities, i.e., how much shorter the message can be if Alice is sending a quantum state instead of bit strings? We make some progress towards this question with the following results. Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z} \cup \{\bot\}$ be a partial function and $\mu$ be a distribution with support contained in $f^{-1}(\mathcal{Z})$. Denote $d=|\mathcal{Z}|$. Let $\mathsf{R}^{1,\mu}_\epsilon(f)$ be the classical one-way communication complexity of $f$; $\mathsf{Q}^{1,\mu}_\epsilon(f)$ be the quantum one-way communication complexity of $f$ and $\mathsf{Q}^{1,\mu, *}_\epsilon(f)$ be the entanglement-assisted quantum one-way communication complexity of $f$, each with distributional error (average error over $\mu$) at most $\epsilon$. We show: 1) If $\mu$ is a product distribution, $\eta > 0$ and $0 \leq \epsilon \leq 1-1/d$, then, $$\mathsf{R}^{1,\mu}_{2\epsilon -d\epsilon^2/(d-1)+ \eta}(f) \leq 2\mathsf{Q}^{1,\mu, *}_{\epsilon}(f) + O(\log\log (1/\eta))\enspace.$$ 2)If $\mu$ is a non-product distribution and $\mathcal{Z}=\{ 0,1\}$, then $\forall \epsilon, \eta > 0$ such that $\epsilon/\eta + \eta < 0.5$, $$\mathsf{R}^{1,\mu}_{3\eta}(f) = O(\mathsf{Q}^{1,\mu}_{{\epsilon}}(f) \cdot \mathsf{CS}(f)/\eta^3)\enspace,$$ where \[\mathsf{CS}(f) = \max_{y} \min_{z\in\{0,1\}} \vert \{x~|~f(x,y)=z\} \vert \enspace.\]

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司