亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The field of human-computer interaction (HCI) is maturing. Systematic reviews, a staple of many disciplines, play an important and often essential role in how each field contributes to human knowledge. On this prospect, we argue that our meta-level approach to research within HCI needs a revolution. First, we echo previous calls for greater rigour in primary research reporting with a view towards supporting knowledge synthesis in secondary research. Second, we must decide as a community how to carry out systematic review work in light of the many ways that knowledge is produced within HCI (rigour in secondary research methods and epistemological inclusivity). In short, our manifesto is this: we need to develop and make space for an inclusive but rigorous set of standards that supports systematic review work in HCI, through careful consideration of both primary and secondary research methods, expectations, and infrastructure. We call for any and all fellow systematic review-lutionaries to join us.

相關內容

This paper explores how AI-owners can develop safeguards for AI-generated content by drawing from established codes of conduct and ethical standards in other content-creation industries. It delves into the current state of ethical awareness on Large Language Models (LLMs). By dissecting the mechanism of content generation by LLMs, four key areas (upstream/downstream and at user prompt/answer), where safeguards could be effectively applied, are identified. A comparative analysis of these four areas follows and includes an evaluation of the existing ethical safeguards in terms of cost, effectiveness, and alignment with established industry practices. The paper's key argument is that existing IT-related ethical codes, while adequate for traditional IT engineering, are inadequate for the challenges posed by LLM-based content generation. Drawing from established practices within journalism, we propose potential standards for businesses involved in distributing and selling LLM-generated content. Finally, potential conflicts of interest between dataset curation at upstream and ethical benchmarking downstream are highlighted to underscore the need for a broader evaluation beyond mere output. This study prompts a nuanced conversation around ethical implications in this rapidly evolving field of content generation.

Advances in voice technology and voice user interfaces (VUIs) -- such as Alexa, Siri, and Google Home -- have opened up the potential for many new types of interaction. However, despite the potential of these devices reflected by the growing market and body of VUI research, there is a lingering sense that the technology is still underused. In this paper, we conducted a systematic literature review of 35 papers to identify and synthesize 127 VUI design guidelines into five themes. Additionally, we conducted semi-structured interviews with 15 smart speaker users to understand their use and non-use of the technology. From the interviews, we distill four design challenges that contribute the most to non-use. Based on their (non-)use, we identify four opportunity spaces for designers to explore such as focusing on information support while multitasking (cooking, driving, childcare, etc), incorporating users' mental models for smart speakers, and integrating calm design principles.

Fixing software bugs and adding new features are two of the major maintenance tasks. Software bugs and features are reported as change requests. Developers consult these requests and often choose a few keywords from them as an ad hoc query. Then they execute the query with a search engine to find the exact locations within software code that need to be changed. Unfortunately, even experienced developers often fail to choose appropriate queries, which leads to costly trials and errors during a code search. Over the years, many studies attempt to reformulate the ad hoc queries from developers to support them. In this systematic literature review, we carefully select 70 primary studies on query reformulations from 2,970 candidate studies, perform an in-depth qualitative analysis (e.g., Grounded Theory), and then answer seven research questions with major findings. First, to date, eight major methodologies (e.g., term weighting, term co-occurrence analysis, thesaurus lookup) have been adopted to reformulate queries. Second, the existing studies suffer from several major limitations (e.g., lack of generalizability, vocabulary mismatch problem, subjective bias) that might prevent their wide adoption. Finally, we discuss the best practices and future opportunities to advance the state of research in search query reformulations.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司