Time-dependent gravity data from satellite missions like GRACE-FO reveal mass redistribution in the system Earth at various time scales: long-term climate change signals, inter-annual phenomena like El Nino, seasonal mass transports and transients, e. g. due to earthquakes. For this contemporary issue, a classical inverse problem has to be considered: the gravitational potential has to be modelled on the Earth's surface from measurements in space. This is also known as the downward continuation problem. Thus, it is important to further develop current mathematical methods for such inverse problems. For this, the (Learning) Inverse Problem Matching Pursuits ((L)IPMPs) have been developed within the last decade. Their unique feature is the combination of local as well as global trial functions in the approximative solution of an inverse problem such as the downward continuation of the gravitational potential. In this way, they harmonize the ideas of a traditional spherical harmonic ansatz and the radial basis function approach. Previous publications on these methods showed proofs of concept. Here, we consider the methods for high-dimensional experiments settings with more than 500 000 grid points which yields a resolution of 20 km at best on a realistic satellite geometry. We also explain the changes in the methods that had to be done to work with such a large amount of data. The corresponding code (updated for big data use) is available at //doi.org/10.5281/zenodo.8223771 under the licence CC BY-NC-SA 3.0 Germany.
In this work we propose and analyze an extension of the approximate component mode synthesis (ACMS) method to the heterogeneous Helmholtz equation. The ACMS method has originally been introduced by Hetmaniuk and Lehoucq as a multiscale method to solve elliptic partial differential equations. The ACMS method uses a domain decomposition to separate the numerical approximation by splitting the variational problem into two independent parts: local Helmholtz problems and a global interface problem. While the former are naturally local and decoupled such that they can be easily solved in parallel, the latter requires the construction of suitable local basis functions relying on local eigenmodes and suitable extensions. We carry out a full error analysis of this approach focusing on the case where the domain decomposition is kept fixed, but the number of eigenfunctions is increased. The theoretical results in this work are supported by numerical experiments verifying algebraic convergence for the method. In certain, practically relevant cases, even exponential convergence for the local Helmholtz problems can be achieved without oversampling.
We consider the problem of estimating the marginal independence structure of a Bayesian network from observational data in the form of an undirected graph called the unconditional dependence graph. We show that unconditional dependence graphs of Bayesian networks correspond to the graphs having equal independence and intersection numbers. Using this observation, a Gr\"obner basis for a toric ideal associated to unconditional dependence graphs of Bayesian networks is given and then extended by additional binomial relations to connect the space of all such graphs. An MCMC method, called GrUES (Gr\"obner-based Unconditional Equivalence Search), is implemented based on the resulting moves and applied to synthetic Gaussian data. GrUES recovers the true marginal independence structure via a penalized maximum likelihood or MAP estimate at a higher rate than simple independence tests while also yielding an estimate of the posterior, for which the $20\%$ HPD credible sets include the true structure at a high rate for data-generating graphs with density at least $0.5$.
We study a pointwise tracking optimal control problem for the stationary Navier--Stokes equations; control constraints are also considered. The problem entails the minimization of a cost functional involving point evaluations of the state velocity field, thus leading to an adjoint problem with a linear combination of Dirac measures as a forcing term in the momentum equation, and whose solution has reduced regularity properties. We analyze the existence of optimal solutions and derive first and, necessary and sufficient, second order optimality conditions in the framework of regular solutions for the Navier--Stokes equations. We develop two discretization strategies: a semidiscrete strategy in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For each solution technique, we analyze convergence properties of discretizations and derive a priori error estimates.
This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.
We analyze the conforming approximation of the time-harmonic Maxwell's equations using N\'ed\'elec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the best-approximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.
We present a method for computing nearly singular integrals that occur when single or double layer surface integrals, for harmonic potentials or Stokes flow, are evaluated at points nearby. Such values could be needed in solving an integral equation when one surface is close to another or to obtain values at grid points. We replace the singular kernel with a regularized version having a length parameter $\delta$ in order to control discretization error. Analysis near the singularity leads to an expression for the error due to regularization which has terms with unknown coefficients multiplying known quantities. By computing the integral with three choices of $\delta$ we can solve for an extrapolated value that has regularization error reduced to $O(\delta^5)$. In examples with $\delta/h$ constant and moderate resolution we observe total error about $O(h^5)$. For convergence as $h \to 0$ we can choose $\delta$ proportional to $h^q$ with $q < 1$ to ensure the discretization error is dominated by the regularization error. With $q = 4/5$ we find errors about $O(h^4)$. For harmonic potentials we extend the approach to a version with $O(\delta^7)$ regularization; it typically has smaller errors but the order of accuracy is less predictable.
This study examines, in the framework of variational regularization methods, a multi-penalty regularization approach which builds upon the Uniform PENalty (UPEN) method, previously proposed by the authors for Nuclear Magnetic Resonance (NMR) data processing. The paper introduces two iterative methods, UpenMM and GUpenMM, formulated within the Majorization-Minimization (MM) framework. These methods are designed to identify appropriate regularization parameters and solutions for linear inverse problems utilizing multi-penalty regularization. The paper demonstrates the convergence of these methods and illustrates their potential through numerical examples in one and two-dimensional scenarios, showing the practical utility of point-wise regularization terms in solving various inverse problems.
We present here a new splitting method to solve Lyapunov equations of the type $AP + PA^T=-BB^T$ in a Kronecker product form. Although that resulting matrix is of order $n^2$, each iteration of the method demands only two operations with the matrix $A$: a multiplication of the form $(A-\sigma I) \hat{B}$ and a inversion of the form $(A-\sigma I)^{-1}\hat{B}$. We see that for some choice of a parameter the iteration matrix is such that all their eigenvalues are in absolute value less than 1, which means that it should converge without depending on the starting vector. Nevertheless we present a theorem that enables us how to get a good starting vector for the method.
We develop easily accessible quantities for bounding the almost sure exponential convergence rate of push-sum algorithms. We analyze the scenario of i.i.d. synchronous gossip, every agent communicating towards its single target at every step. Multiple bounding expressions are developed depending on the generality of the setup, all functions of the spectrum of the network. While the most general bound awaits further improvement, with more symmetries, close bounds can be established, as demonstrated by numerical simulations.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.