Copy-protection allows a software distributor to encode a program in such a way that it can be evaluated on any input, yet it cannot be "pirated" - a notion that is impossible to achieve in a classical setting. Aaronson (CCC 2009) initiated the formal study of quantum copy-protection schemes, and speculated that quantum cryptography could offer a solution to the problem thanks to the quantum no-cloning theorem. In this work, we introduce a quantum copy-protection scheme for a large class of evasive functions known as "compute-and-compare programs" - a more expressive generalization of point functions. A compute-and-compare program $\mathsf{CC}[f,y]$ is specified by a function $f$ and a string $y$ within its range: on input $x$, $\mathsf{CC}[f,y]$ outputs $1$, if $f(x) = y$, and $0$ otherwise. We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM), which makes it the first copy-protection scheme to enjoy any level of provable security in a standard cryptographic model. As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing", introduced very recently by Ananth and La Placa (eprint 2020), with a standard security bound in the QROM, i.e. guaranteeing negligible adversarial advantage. Finally, as a third contribution, we elucidate the relationship between unclonable encryption and copy-protection for multi-bit output point functions.
The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design \cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
Quantum algorithms often apply classical operations, such as arithmetic or predicate checks, over a quantum superposition of classical data; these so-called oracles are often the largest components of a quantum program. To ease the construction of efficient, correct oracle functions, this paper presents VQO, a high-assurance framework implemented with the Coq proof assistant. The core of VQO is OQASM, the oracle quantum assembly language. OQASM operations move qubits between two different bases via the quantum Fourier transform, thus admitting important optimizations, but without inducing entanglement and the exponential blowup that comes with it. OQASM's design enabled us to prove correct VQO's compilers -- from a simple imperative language called OQIMP to OQASM, and from OQASM to SQIR, a general-purpose quantum assembly language -- and allowed us to efficiently test properties of OQASM programs using the QuickChick property-based testing framework. We have used VQO to implement a variety of arithmetic and geometric operators that are building blocks for important oracles, including those used in Shor's and Grover's algorithms. We found that VQO's QFT-based arithmetic oracles require fewer qubits, sometimes substantially fewer, than those constructed using "classical" gates; VQO's versions of the latter were nevertheless on par with or better than (in terms of both qubit and gate counts) oracles produced by Quipper, a state-of-the-art but unverified quantum programming platform.
Continuous-time measurements are instrumental for a multitude of tasks in quantum engineering and quantum control, including the estimation of dynamical parameters of open quantum systems monitored through the environment. However, such measurements do not extract the maximum amount of information available in the output state, so finding alternative optimal measurement strategies is a major open problem. In this paper we solve this problem in the setting of discrete-time input-output quantum Markov chains. We present an efficient algorithm for optimal estimation of one-dimensional dynamical parameters which consists of an iterative procedure for updating a `measurement filter' operator and determining successive measurement bases for the output units. A key ingredient of the scheme is the use of a coherent quantum absorber as a way to post-process the output after the interaction with the system. This is designed adaptively such that the joint system and absorber stationary state is pure at a reference parameter value. The scheme offers an exciting prospect for optimal continuous-time adaptive measurements, but more work is needed to find realistic practical implementations.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.
The latest biological findings discover that the motionless 'lock-and-key' theory is no longer applicable and the flexibility of both the receptor and ligand plays a significant role in helping understand the principles of the binding affinity prediction. Based on this mechanism, molecular dynamics (MD) simulations have been invented as a useful tool to investigate the dynamical properties of this molecular system. However, the computational expenditure prohibits the growth of reported protein trajectories. To address this insufficiency, we present a novel spatial-temporal pre-training protocol, PretrainMD, to grant the protein encoder the capacity to capture the time-dependent geometric mobility along MD trajectories. Specifically, we introduce two sorts of self-supervised learning tasks: an atom-level denoising generative task and a protein-level snapshot ordering task. We validate the effectiveness of PretrainMD through the PDBbind dataset for both linear-probing and fine-tuning. Extensive experiments show that our PretrainMD exceeds most state-of-the-art methods and achieves comparable performance. More importantly, through visualization we discover that the learned representations by pre-training on MD trajectories without any label from the downstream task follow similar patterns of the magnitude of binding affinities. This strongly aligns with the fact that the motion of the interactions of protein and ligand maintains the key information of their binding. Our work provides a promising perspective of self-supervised pre-training for protein representations with very fine temporal resolutions and hopes to shed light on the further usage of MD simulations for the biomedical deep learning community.
Generating a test suite for a quantum program such that it has the maximum number of failing tests is an optimization problem. For such optimization, search-based testing has shown promising results in the context of classical programs. To this end, we present a test generation tool for quantum programs based on a genetic algorithm, called QuSBT (Search-based Testing of Quantum Programs). QuSBT automates the testing of quantum programs, with the aim of finding a test suite having the maximum number of failing test cases. QuSBT utilizes IBM's Qiskit as the simulation framework for quantum programs. We present the tool architecture in addition to the implemented methodology (i.e., the encoding of the search individual, the definition of the fitness function expressing the search problem, and the test assessment w.r.t. two types of failures). Finally, we report results of the experiments in which we tested a set of faulty quantum programs with QuSBT to assess its effectiveness. Repository (code and experimental results): //github.com/Simula-COMPLEX/qusbt-tool Video: //youtu.be/3apRCtluAn4
We demonstrate that merely analog transmissions and match filtering can realize the function of an edge server in federated learning (FL). Therefore, a network with massively distributed user equipments (UEs) can achieve large-scale FL without an edge server. We also develop a training algorithm that allows UEs to continuously perform local computing without being interrupted by the global parameter uploading, which exploits the full potential of UEs' processing power. We derive convergence rates for the proposed schemes to quantify their training efficiency. The analyses reveal that when the interference obeys a Gaussian distribution, the proposed algorithm retrieves the convergence rate of a server-based FL. But if the interference distribution is heavy-tailed, then the heavier the tail, the slower the algorithm converges. Nonetheless, the system run time can be largely reduced by enabling computation in parallel with communication, whereas the gain is particularly pronounced when communication latency is high. These findings are corroborated via excessive simulations.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'