亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constructions of infinite families of distance-optimal codes in the Hamming metric and the sum-rank metric are challenging problems and have attracted many attentions. In this paper, we give the following three results. 1) If $\lambda|q^{sm}-1$ and $\lambda <\sqrt{\frac{(q^s-1)}{2(q-1)^2(1+\epsilon)}}$, an infinite family of distance-optimal $q$-ary cyclic sum-rank codes with the block length $t=\frac{q^{sm}-1}{\lambda}$, the matrix size $s \times s$, the cardinality $q^{s^2t-s(2m+3)}$ and the minimum sum-rank distance four is constructed. 2) Block length $q^4-1$ and the matrix size $2 \times 2$ distance-optimal sum-rank codes with the minimum sum-rank distance four and the Singleton defect four are constructed. These sum-rank codes are close to the sphere packing bound , the Singleton-like bound and have much larger block length $q^4-1>>q-1$. 3) For given positive integers $n$ and $m$ satisfying $m<n$, an infinite family of perfect sum-rank codes with the matrix size $m \times n$, and the minimum sum-rank distance three is also constructed. The construction of perfect sum-rank codes of the matrix size $m \times n$, $1<m<n$, answers a problem proposed by U. Mart\'{\i}nez-Pe\~{n}as in 2019 positively. We show that more distance-optimal sum-rank codes can be obtained from the Plotkin sum.

相關內容

Recent years have witnessed significant advancement in face recognition (FR) techniques, with their applications widely spread in people's lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such systems. Existing studies relying on various mechanisms have investigated the usage of saliency maps as an explanation approach, but suffer from different limitations. This paper first explores the spatial relationship between face image and its deep representation via gradient backpropagation. Then a new explanation approach FGGB has been conceived, which provides precise and insightful similarity and dissimilarity saliency maps to explain the "Accept" and "Reject" decision of an FR system. Extensive visual presentation and quantitative measurement have shown that FGGB achieves superior performance in both similarity and dissimilarity maps when compared to current state-of-the-art explainable face verification approaches.

The pursuit of accurate 3D hand pose estimation stands as a keystone for understanding human activity in the realm of egocentric vision. The majority of existing estimation methods still rely on single-view images as input, leading to potential limitations, e.g., limited field-of-view and ambiguity in depth. To address these problems, adding another camera to better capture the shape of hands is a practical direction. However, existing multi-view hand pose estimation methods suffer from two main drawbacks: 1) Requiring multi-view annotations for training, which are expensive. 2) During testing, the model becomes inapplicable if camera parameters/layout are not the same as those used in training. In this paper, we propose a novel Single-to-Dual-view adaptation (S2DHand) solution that adapts a pre-trained single-view estimator to dual views. Compared with existing multi-view training methods, 1) our adaptation process is unsupervised, eliminating the need for multi-view annotation. 2) Moreover, our method can handle arbitrary dual-view pairs with unknown camera parameters, making the model applicable to diverse camera settings. Specifically, S2DHand is built on certain stereo constraints, including pair-wise cross-view consensus and invariance of transformation between both views. These two stereo constraints are used in a complementary manner to generate pseudo-labels, allowing reliable adaptation. Evaluation results reveal that S2DHand achieves significant improvements on arbitrary camera pairs under both in-dataset and cross-dataset settings, and outperforms existing adaptation methods with leading performance. Project page: //github.com/MickeyLLG/S2DHand.

Large Language Models (LLMs) have demonstrated exceptional performance in biochemical tasks, especially the molecule caption translation task, which aims to bridge the gap between molecules and natural language texts. However, previous methods in adapting LLMs to the molecule-caption translation task required extra domain-specific pre-training stages, suffered weak alignment between molecular and textual spaces, or imposed stringent demands on the scale of LLMs. To resolve the challenges, we propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples via In-Context Molecule Tuning. Specifically, ICMA incorporates the following three stages: Cross-modal Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning. Initially, Cross-modal Retrieval utilizes BM25 Caption Retrieval and Molecule Graph Retrieval to retrieve informative context examples. Additionally, we also propose Post-retrieval Re-ranking with Sequence Reversal and Random Walk to further improve the quality of retrieval results. Finally, In-Context Molecule Tuning unlocks the in-context molecule learning capability of LLMs with retrieved examples and adapts the parameters of LLMs for the molecule-caption translation task. Experimental results demonstrate that ICMT can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures, showing that LLMs are inherently in-context molecule learners.

We consider many-to-one matching problems, where one side consists of students and the other side of schools with capacity constraints. We study how to optimally increase the capacities of the schools so as to obtain a stable and perfect matching (i.e., every student is matched) or a matching that is stable and Pareto-efficient for the students. We consider two common optimality criteria, one aiming to minimize the sum of capacity increases of all schools (abbrv. as MinSum) and the other aiming to minimize the maximum capacity increase of any school (abbrv. as MinMax). We obtain a complete picture in terms of computational complexity: Except for stable and perfect matchings using the MinMax criteria which is polynomial-time solvable, all three remaining problems are NP-hard. We further investigate the parameterized complexity and approximability and find that achieving stable and Pareto-efficient matchings via minimal capacity increases is much harder than achieving stable and perfect matchings.

We introduce a new notion of neighboring databases for coverage problems such as Max Cover and Set Cover under differential privacy. In contrast to the standard privacy notion for these problems, which is analogous to node-privacy in graphs, our new definition gives a more fine-grained privacy guarantee, which is analogous to edge-privacy. We illustrate several scenarios of Set Cover and Max Cover where our privacy notion is desired one for the application. Our main result is an $\epsilon$-edge differentially private algorithm for Max Cover which obtains an $(1-1/e-\eta,\tilde{O}(k/\epsilon))$-approximation with high probability. Furthermore, we show that this result is nearly tight: we give a lower bound show that an additive error of $\Omega(k/\epsilon)$ is necessary under edge-differential privacy. Via group privacy properties, this implies a new algorithm for $\epsilon$-node differentially private Max Cover which obtains an $(1-1/e-\eta,\tilde{O}(fk/\epsilon))$-approximation, where $f$ is the maximum degree of an element in the set system. When $f\ll k$, this improves over the best known algorithm for Max Cover under pure (node) differential privacy, which obtains an $(1-1/e,\tilde{O}(k^2/\epsilon))$-approximation.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at //github.com/yue-zhongqi/gcm-cf.

Model-agnostic meta-learners aim to acquire meta-learned parameters from similar tasks to adapt to novel tasks from the same distribution with few gradient updates. With the flexibility in the choice of models, those frameworks demonstrate appealing performance on a variety of domains such as few-shot image classification and reinforcement learning. However, one important limitation of such frameworks is that they seek a common initialization shared across the entire task distribution, substantially limiting the diversity of the task distributions that they are able to learn from. In this paper, we augment MAML with the capability to identify the mode of tasks sampled from a multimodal task distribution and adapt quickly through gradient updates. Specifically, we propose a multimodal MAML (MMAML) framework, which is able to modulate its meta-learned prior parameters according to the identified mode, allowing more efficient fast adaptation. We evaluate the proposed model on a diverse set of few-shot learning tasks, including regression, image classification, and reinforcement learning. The results not only demonstrate the effectiveness of our model in modulating the meta-learned prior in response to the characteristics of tasks but also show that training on a multimodal distribution can produce an improvement over unimodal training.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司