Building on the success of PC-JeDi we introduce PC-Droid, a substantially improved diffusion model for the generation of jet particle clouds. By leveraging a new diffusion formulation, studying more recent integration solvers, and training on all jet types simultaneously, we are able to achieve state-of-the-art performance for all types of jets across all evaluation metrics. We study the trade-off between generation speed and quality by comparing two attention based architectures, as well as the potential of consistency distillation to reduce the number of diffusion steps. Both the faster architecture and consistency models demonstrate performance surpassing many competing models, with generation time up to two orders of magnitude faster than PC-JeDi and three orders of magnitude faster than Delphes.
Retrieving answers in a quick and low cost manner without hallucinations from a combination of structured and unstructured data using Language models is a major hurdle which prevents employment of Language models in knowledge retrieval automation. This becomes accentuated when one wants to integrate a speech interface. Besides, for commercial search and chatbot applications, complete reliance on commercial large language models (LLMs) like GPT 3.5 etc. can be very costly. In this work, authors have addressed this problem by first developing a keyword based search framework which augments discovery of the context to be provided to the large language model. The keywords in turn are generated by LLM and cached for comparison with keywords generated by LLM against the query raised. This significantly reduces time and cost to find the context within documents. Once the context is set, LLM uses that to provide answers based on a prompt tailored for Q&A. This research work demonstrates that use of keywords in context identification reduces the overall inference time and cost of information retrieval. Given this reduction in inference time and cost with the keyword augmented retrieval framework, a speech based interface for user input and response readout was integrated. This allowed a seamless interaction with the language model.
This paper addresses the problem of designing the {\it continuous-discrete} unscented Kalman filter (UKF) implementation methods. More precisely, the aim is to propose the MATLAB-based UKF algorithms for {\it accurate} and {\it robust} state estimation of stochastic dynamic systems. The accuracy of the {\it continuous-discrete} nonlinear filters heavily depends on how the implementation method manages the discretization error arisen at the filter prediction step. We suggest the elegant and accurate implementation framework for tracking the hidden states by utilizing the MATLAB built-in numerical integration schemes developed for solving ordinary differential equations (ODEs). The accuracy is boosted by the discretization error control involved in all MATLAB ODE solvers. This keeps the discretization error below the tolerance value provided by users, automatically. Meanwhile, the robustness of the UKF filtering methods is examined in terms of the stability to roundoff. In contrast to the pseudo-square-root UKF implementations established in engineering literature, which are based on the one-rank Cholesky updates, we derive the stable square-root methods by utilizing the $J$-orthogonal transformations for calculating the Cholesky square-root factors.
The estimation of rare event probabilities plays a pivotal role in diverse fields. Our aim is to determine the probability of a hazard or system failure occurring when a quantity of interest exceeds a critical value. In our approach, the distribution of the quantity of interest is represented by an energy density, characterized by a free energy function. To efficiently estimate the free energy, a bias potential is introduced. Using concepts from energy-based models (EBM), this bias potential is optimized such that the corresponding probability density function approximates a pre-defined distribution targeting the failure region of interest. Given the optimal bias potential, the free energy function and the rare event probability of interest can be determined. The approach is applicable not just in traditional rare event settings where the variable upon which the quantity of interest relies has a known distribution, but also in inversion settings where the variable follows a posterior distribution. By combining the EBM approach with a Stein discrepancy-based stopping criterion, we aim for a balanced accuracy-efficiency trade-off. Furthermore, we explore both parametric and non-parametric approaches for the bias potential, with the latter eliminating the need for choosing a particular parameterization, but depending strongly on the accuracy of the kernel density estimate used in the optimization process. Through three illustrative test cases encompassing both traditional and inversion settings, we show that the proposed EBM approach, when properly configured, (i) allows stable and efficient estimation of rare event probabilities and (ii) compares favorably against subset sampling approaches.
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to \textit{couple} the base and the target densities. This enables us to incorporate information about class labels or continuous embeddings to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.
As an optical processor, a Diffractive Deep Neural Network (D2NN) utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing, completing its tasks at the speed of light propagation through thin optical layers. With sufficient degrees-of-freedom, D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light. Similarly, D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination; however, under spatially incoherent light, these transformations are non-negative, acting on diffraction-limited optical intensity patterns at the input field-of-view (FOV). Here, we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light. Through simulations, we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products, a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination. The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
This paper develops a weak Galerkin (WG) finite element method of arbitrary order for the steady incompressible Magnetohydrodynamics equations. The WG scheme uses piecewise polynomials of degrees $k(k\geq 1),k,k-1$, and $k-1$ respectively for the approximations of the velocity, the magnetic field, the pressure, and the magnetic pseudo-pressure in the interior of elements, and uses piecewise polynomials of degree $k$ for their numerical traces on the interfaces of elements. The method is shown to yield globally divergence-free approximations of the velocity and magnetic fields. We give existence and uniqueness results for the discrete scheme and derive optimal a priori error estimates. We also present a convergent linearized iterative algorithm. Numerical experiments are provided to verify the obtained theoretical results.
We study the global convergence of a Fisher-Rao policy gradient flow for infinite-horizon entropy-regularised Markov decision processes with Polish state and action space. The flow is a continuous-time analogue of a policy mirror descent method. We establish the global well-posedness of the gradient flow and demonstrate its exponential convergence to the optimal policy. Moreover, we prove the flow is stable with respect to gradient evaluation, offering insights into the performance of a natural policy gradient flow with log-linear policy parameterisation. To overcome challenges stemming from the lack of the convexity of the objective function and the discontinuity arising from the entropy regulariser, we leverage the performance difference lemma and the duality relationship between the gradient and mirror descent flows.
We present a method to improve the calibration of deep ensembles in the small training data regime in the presence of unlabeled data. Our approach is extremely simple to implement: given an unlabeled set, for each unlabeled data point, we simply fit a different randomly selected label with each ensemble member. We provide a theoretical analysis based on a PAC-Bayes bound which guarantees that if we fit such a labeling on unlabeled data, and the true labels on the training data, we obtain low negative log-likelihood and high ensemble diversity on testing samples. Empirically, through detailed experiments, we find that for low to moderately-sized training sets, our ensembles are more diverse and provide better calibration than standard ensembles, sometimes significantly.
Recently, order-preserving pattern (OPP) mining, a new sequential pattern mining method, has been proposed to mine frequent relative orders in a time series. Although frequent relative orders can be used as features to classify a time series, the mined patterns do not reflect the differences between two classes of time series well. To effectively discover the differences between time series, this paper addresses the top-k contrast OPP (COPP) mining and proposes a COPP-Miner algorithm to discover the top-k contrast patterns as features for time series classification, avoiding the problem of improper parameter setting. COPP-Miner is composed of three parts: extreme point extraction to reduce the length of the original time series, forward mining, and reverse mining to discover COPPs. Forward mining contains three steps: group pattern fusion strategy to generate candidate patterns, the support rate calculation method to efficiently calculate the support of a pattern, and two pruning strategies to further prune candidate patterns. Reverse mining uses one pruning strategy to prune candidate patterns and consists of applying the same process as forward mining. Experimental results validate the efficiency of the proposed algorithm and show that top-k COPPs can be used as features to obtain a better classification performance.
Recently, Sato et al. proposed an public verifiable blind quantum computation (BQC) protocol by inserting a third-party arbiter. However, it is not true public verifiable in a sense, because the arbiter is determined in advance and participates in the whole process. In this paper, a public verifiable protocol for measurement-only BQC is proposed. The fidelity between arbitrary states and the graph states of 2-colorable graphs is estimated by measuring the entanglement witnesses of the graph states,so as to verify the correctness of the prepared graph states. Compared with the previous protocol, our protocol is public verifiable in the true sense by allowing other random clients to execute the public verification. It also has greater advantages in the efficiency, where the number of local measurements is O(n^3*log {n}) and graph states' copies is O(n^2*log{n}).