This paper develops a weak Galerkin (WG) finite element method of arbitrary order for the steady incompressible Magnetohydrodynamics equations. The WG scheme uses piecewise polynomials of degrees $k(k\geq 1),k,k-1$, and $k-1$ respectively for the approximations of the velocity, the magnetic field, the pressure, and the magnetic pseudo-pressure in the interior of elements, and uses piecewise polynomials of degree $k$ for their numerical traces on the interfaces of elements. The method is shown to yield globally divergence-free approximations of the velocity and magnetic fields. We give existence and uniqueness results for the discrete scheme and derive optimal a priori error estimates. We also present a convergent linearized iterative algorithm. Numerical experiments are provided to verify the obtained theoretical results.
The tasks of automatic lyrics transcription and lyrics alignment have witnessed significant performance improvements in the past few years. However, most of the previous works only focus on English in which large-scale datasets are available. In this paper, we address lyrics transcription and alignment of polyphonic Mandarin pop music in a low-resource setting. To deal with the data scarcity issue, we adapt pretrained Whisper model and fine-tune it on a monophonic Mandarin singing dataset. With the use of data augmentation and source separation model, results show that the proposed method achieves a character error rate of less than 18% on a Mandarin polyphonic dataset for lyrics transcription, and a mean absolute error of 0.071 seconds for lyrics alignment. Our results demonstrate the potential of adapting a pretrained speech model for lyrics transcription and alignment in low-resource scenarios.
Graph Convolution Networks (GCNs) are widely considered state-of-the-art for collaborative filtering. Although several GCN-based methods have been proposed and achieved state-of-the-art performance in various tasks, they can be computationally expensive and time-consuming to train if too many layers are created. However, since the linear GCN model can be interpreted as a differential equation, it is possible to transfer it to an ODE problem. This inspired us to address the computational limitations of GCN-based models by designing a simple and efficient NODE-based model that can skip some GCN layers to reach the final state, thus avoiding the need to create many layers. In this work, we propose a Graph Neural Ordinary Differential Equation-based method for Collaborative Filtering (GODE-CF). This method estimates the final embedding by utilizing the information captured by one or two GCN layers. To validate our approach, we conducted experiments on multiple datasets. The results demonstrate that our model outperforms competitive baselines, including GCN-based models and other state-of-the-art CF methods. Notably, our proposed GODE-CF model has several advantages over traditional GCN-based models. It is simple, efficient, and has a fast training time, making it a practical choice for real-world situations.
We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers, and conversely.
The Arnoldi-Tikhonov method is a well-established regularization technique for solving large-scale ill-posed linear inverse problems. This method leverages the Arnoldi decomposition to reduce computational complexity by projecting the discretized problem into a lower-dimensional Krylov subspace, in which it is solved. This paper explores the iterated Arnoldi-Tikhonov method, conducting a comprehensive analysis that addresses all approximation errors. Additionally, it introduces a novel strategy for choosing the regularization parameter, leading to more accurate approximate solutions compared to the standard Arnoldi-Tikhonov method. Moreover, the proposed method demonstrates robustness with respect to the regularization parameter, as confirmed by the numerical results.
A fully discrete semi-convex-splitting finite-element scheme with stabilization for a degenerate Cahn-Hilliard cross-diffusion system is analyzed. The system consists of parabolic fourth-order equations for the volume fraction of the fiber phase and the solute concentration, modeling pre-patterning of lymphatic vessel morphology. The existence of discrete solutions is proved, and it is shown that the numerical scheme is energy stable up to stabilization, conserves the solute mass, and preserves the lower and upper bounds of the fiber phase fraction. Numerical experiments in two space dimensions using FreeFEM illustrate the phase segregation and pattern formation.
We present an unstructured geometrical Volume-of-Fluid (VOF) method for handling two-phase flows with a viscoelastic liquid phase. The viscoelastic behavior is modeled via generic rate-type constitutive equations. A one-field formulation is employed, which results from conditional volume averaging of the local instantaneous bulk equations and interface jump conditions. The method builds on the 'plicRDF-isoAdvector' geometrical VOF solver that is extended and combined with the modular framework 'DeboRheo' for viscoelastic CFD. A piecewise-linear geometrical interface reconstruction technique on general unstructured meshes is employed for discretizing the viscoelastic stresses across the fluid interface in a numerically consistent and highly accurate way. Because of the numerical challenges posed by the high Weissenberg number problem, we employ an appropriate stabilization approach to the constitutive equation of the viscoelastic phase to increase the robustness of the method at higher fluid elasticity. DeboRheo facilitates a flexible combination of different rheological models with appropriate stabilization methods to address the high Weissenberg number problem. We discuss the theoretical formulation and implementation of the proposed method and demonstrate its effectiveness using numerical examples of viscoelastic flows. The results highlight the method's ability to accurately capture the behavior of viscoelastic fluids in various applications. The proposed method holds promise for furthering our understanding and predictive capabilities of viscoelastic flows in various industrial and natural processes.
We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is not uniquely defined. We propose several possible definitions for such an operation, and we prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck equation. For a specific choice of extrapolation we also prove a more general result, that is convergence towards EVI flows. Finally, we propose a variational finite volume discretization of the scheme which numerically achieves second order accuracy in both space and time.
*《Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs》A Jolicoeur-Martineau, I Mitliagkas [Mila] (2019)
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.