亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Arnoldi-Tikhonov method is a well-established regularization technique for solving large-scale ill-posed linear inverse problems. This method leverages the Arnoldi decomposition to reduce computational complexity by projecting the discretized problem into a lower-dimensional Krylov subspace, in which it is solved. This paper explores the iterated Arnoldi-Tikhonov method, conducting a comprehensive analysis that addresses all approximation errors. Additionally, it introduces a novel strategy for choosing the regularization parameter, leading to more accurate approximate solutions compared to the standard Arnoldi-Tikhonov method. Moreover, the proposed method demonstrates robustness with respect to the regularization parameter, as confirmed by the numerical results.

相關內容

This paper presents a time-causal analogue of the Gabor filter, as well as a both time-causal and time-recursive analogue of the Gabor transform, where the proposed time-causal representations obey both temporal scale covariance and a cascade property with a simplifying kernel over temporal scales. The motivation behind these constructions is to enable theoretically well-founded time-frequency analysis over multiple temporal scales for real-time situations, or for physical or biological modelling situations, when the future cannot be accessed, and the non-causal access to future in Gabor filtering is therefore not viable for a time-frequency analysis of the system. We develop the theory for these representations, obtained by replacing the Gaussian kernel in Gabor filtering with a time-causal kernel, referred to as the time-causal limit kernel, which guarantees simplification properties from finer to coarser levels of scales in a time-causal situation, similar as the Gaussian kernel can be shown to guarantee over a non-causal temporal domain. In these ways, the proposed time-frequency representations guarantee well-founded treatment over multiple scales, in situations when the characteristic scales in the signals, or physical or biological phenomena, to be analyzed may vary substantially, and additionally all steps in the time-frequency analysis have to be fully time-causal.

We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.

The variational quantum algorithms are crucial for the application of NISQ computers. Such algorithms require short quantum circuits, which are more amenable to implementation on near-term hardware, and many such methods have been developed. One of particular interest is the so-called variational quantum state diagonalization method, which constitutes an important algorithmic subroutine and can be used directly to work with data encoded in quantum states. In particular, it can be applied to discern the features of quantum states, such as entanglement properties of a system, or in quantum machine learning algorithms. In this work, we tackle the problem of designing a very shallow quantum circuit, required in the quantum state diagonalization task, by utilizing reinforcement learning (RL). We use a novel encoding method for the RL-state, a dense reward function, and an $\epsilon$-greedy policy to achieve this. We demonstrate that the circuits proposed by the reinforcement learning methods are shallower than the standard variational quantum state diagonalization algorithm and thus can be used in situations where hardware capabilities limit the depth of quantum circuits. The methods we propose in the paper can be readily adapted to address a wide range of variational quantum algorithms.

We present a comprehensive analysis of the implications of artificial latency in the Proposer-Builder Separation framework on the Ethereum network. Focusing on the MEV-Boost auction system, we analyze how strategic latency manipulation affects Maximum Extractable Value yields and network integrity. Our findings reveal both increased profitability for node operators and significant systemic challenges, including heightened network inefficiencies and centralization risks. We empirically validates these insights with a pilot that Chorus One has been operating on Ethereum mainnet. We demonstrate the nuanced effects of latency on bid selection and validator dynamics. Ultimately, this research underscores the need for balanced strategies that optimize Maximum Extractable Value capture while preserving the Ethereum network's decentralization ethos.

Spatial regression models are central to the field of spatial statistics. Nevertheless, their estimation in case of large and irregular gridded spatial datasets presents considerable computational challenges. To tackle these computational problems, Arbia \citep{arbia_2014_pairwise} introduced a pseudo-likelihood approach (called pairwise likelihood, say PL) which required the identification of pairs of observations that are internally correlated, but mutually conditionally uncorrelated. However, while the PL estimators enjoy optimal theoretical properties, their practical implementation when dealing with data observed on irregular grids suffers from dramatic computational issues (connected with the identification of the pairs of observations) that, in most empirical cases, negatively counter-balance its advantages. In this paper we introduce an algorithm specifically designed to streamline the computation of the PL in large and irregularly gridded spatial datasets, dramatically simplifying the estimation phase. In particular, we focus on the estimation of Spatial Error models (SEM). Our proposed approach, efficiently pairs spatial couples exploiting the KD tree data structure and exploits it to derive the closed-form expressions for fast parameter approximation. To showcase the efficiency of our method, we provide an illustrative example using simulated data, demonstrating the computational advantages if compared to a full likelihood inference are not at the expenses of accuracy.

We are interested in generating surfaces with arbitrary roughness and forming patterns on the surfaces. Two methods are applied to construct rough surfaces. In the first method, some superposition of wave functions with random frequencies and angles of propagation are used to get periodic rough surfaces with analytic parametric equations. The amplitude of such surfaces is also an important variable in the provided eigenvalue analysis for the Laplace-Beltrami operator and in the generation of pattern formation. Numerical experiments show that the patterns become irregular as the amplitude and frequency of the rough surface increase. For the sake of easy generalization to closed manifolds, we propose a second construction method for rough surfaces, which uses random nodal values and discretized heat filters. We provide numerical evidence that both surface {construction methods} yield comparable patterns to those {observed} in real-life animals.

Heating, Ventilation, and Air Conditioning (HVAC) systems are a major driver of energy consumption in commercial and residential buildings. Recent studies have shown that Deep Reinforcement Learning (DRL) algorithms can outperform traditional reactive controllers. However, DRL-based solutions are generally designed for ad hoc setups and lack standardization for comparison. To fill this gap, this paper provides a critical and reproducible evaluation, in terms of comfort and energy consumption, of several state-of-the-art DRL algorithms for HVAC control. The study examines the controllers' robustness, adaptability, and trade-off between optimization goals by using the Sinergym framework. The results obtained confirm the potential of DRL algorithms, such as SAC and TD3, in complex scenarios and reveal several challenges related to generalization and incremental learning.

Numerical methods for SDEs with irregular coefficients are intensively studied in the literature, with different types of irregularities usually being attacked separately. In this paper we combine two different types of irregularities: polynomially growing drift coefficients and discontinuous drift coefficients. For SDEs that suffer from both irregularities we prove strong convergence of order $1/2$ of the tamed-Euler-Maruyama scheme from [Hutzenthaler, M., Jentzen, A., and Kloeden, P. E., The Annals of Applied Probability, 22(4):1611-1641, 2012].

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司