亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the asymptotic properties of and improved inference methods for kernel density estimation (KDE) for dyadic data. We first establish novel uniform convergence rates for dyadic KDE under general assumptions. As the existing analytic variance estimator is known to behave unreliably in finite samples, we propose a modified jackknife empirical likelihood procedure for inference. The proposed test statistic is self-normalised and no variance estimator is required. In addition, it is asymptotically pivotal regardless of presence of dyadic clustering. The results are extended to cover the practically relevant case of incomplete dyadic network data. Simulations show that this jackknife empirical likelihood-based inference procedure delivers precise coverage probabilities even under modest sample sizes and with incomplete dyadic data. Finally, we illustrate the method by studying airport congestion.

相關內容

A fully discrete finite difference scheme for stochastic reaction-diffusion equations driven by a $1+1$-dimensional white noise is studied. The optimal strong rate of convergence is proved without posing any regularity assumption on the non-linear reaction term. The proof relies on stochastic sewing techniques.

The goal of this paper is to develop a practical and general-purpose approach to construct confidence intervals for differentially private parametric estimation. We find that the parametric bootstrap is a simple and effective solution. It cleanly reasons about variability of both the data sample and the randomized privacy mechanism and applies "out of the box" to a wide class of private estimation routines. It can also help correct bias caused by clipping data to limit sensitivity. We prove that the parametric bootstrap gives consistent confidence intervals in two broadly relevant settings, including a novel adaptation to linear regression that avoids accessing the covariate data multiple times. We demonstrate its effectiveness for a variety of estimators, and find that it provides confidence intervals with good coverage even at modest sample sizes and performs better than alternative approaches.

We advocate for a practical Maximum Likelihood Estimation (MLE) approach towards designing loss functions for regression and forecasting, as an alternative to the typical approach of direct empirical risk minimization on a specific target metric. The MLE approach is better suited to capture inductive biases such as prior domain knowledge in datasets, and can output post-hoc estimators at inference time that can optimize different types of target metrics. We present theoretical results to demonstrate that our approach is competitive with any estimator for the target metric under some general conditions. In two example practical settings, Poisson and Pareto regression, we show that our competitive results can be used to prove that the MLE approach has better excess risk bounds than directly minimizing the target metric. We also demonstrate empirically that our method instantiated with a well-designed general purpose mixture likelihood family can obtain superior performance for a variety of tasks across time-series forecasting and regression datasets with different data distributions.

In this paper, we consider possibly misspecified stochastic differential equation models driven by L\'{e}vy processes. Regardless of whether the driving noise is Gaussian or not, Gaussian quasi-likelihood estimator can estimate unknown parameters in the drift and scale coefficients. However, in the misspecified case, the asymptotic distribution of the estimator varies by the correction of the misspecification bias, and consistent estimators for the asymptotic variance proposed in the correctly specified case may lose theoretical validity. As one of its solutions, we propose a bootstrap method for approximating the asymptotic distribution. We show that our bootstrap method theoretically works in both correctly specified case and misspecified case without assuming the precise distribution of the driving noise.

The importance of Variational Autoencoders reaches far beyond standalone generative models -- the approach is also used for learning latent representations and can be generalized to semi-supervised learning. This requires a thorough analysis of their commonly known shortcomings: posterior collapse and approximation errors. This paper analyzes VAE approximation errors caused by the combination of the ELBO objective with the choice of the encoder probability family, in particular under conditional independence assumptions. We identify the subclass of generative models consistent with the encoder family. We show that the ELBO optimizer is pulled from the likelihood optimizer towards this consistent subset. Furthermore, this subset can not be enlarged, and the respective error cannot be decreased, by only considering deeper encoder networks.

We develop a post-selective Bayesian framework to jointly and consistently estimate parameters in group-sparse linear regression models. After selection with the Group LASSO (or generalized variants such as the overlapping, sparse, or standardized Group LASSO), uncertainty estimates for the selected parameters are unreliable in the absence of adjustments for selection bias. Existing post-selective approaches are limited to uncertainty estimation for (i) real-valued projections onto very specific selected subspaces for the group-sparse problem, (ii) selection events categorized broadly as polyhedral events that are expressible as linear inequalities in the data variables. Our Bayesian methods address these gaps by deriving a likelihood adjustment factor, and an approximation thereof, that eliminates bias from selection. Paying a very nominal price for this adjustment, experiments on simulated data, and data from the Human Connectome Project demonstrate the efficacy of our methods for a joint estimation of group-sparse parameters and their uncertainties post selection.

This paper develops a general methodology to conduct statistical inference for observations indexed by multiple sets of entities. We propose a novel multiway empirical likelihood statistic that converges to a chi-square distribution under the non-degenerate case, where corresponding Hoeffding type decomposition is dominated by linear terms. Our methodology is related to the notion of jackknife empirical likelihood but the leave-out pseudo values are constructed by leaving columns or rows. We further develop a modified version of our multiway empirical likelihood statistic, which converges to a chi-square distribution regardless of the degeneracy, and discover its desirable higher-order property compared to the t-ratio by the conventional Eicker-White type variance estimator. The proposed methodology is illustrated by several important statistical problems, such as bipartite network, two-stage sampling, generalized estimating equations, and three-way observations.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司