亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explaining why a database query result is obtained is an essential task towards the goal of Explainable AI, especially nowadays where expressive database query languages such as Datalog play a critical role in the development of ontology-based applications. A standard way of explaining a query result is the so-called why-provenance, which essentially provides information about the witnesses to a query result in the form of subsets of the input database that are sufficient to derive that result. To our surprise, despite the fact that the notion of why-provenance for Datalog queries has been around for decades and intensively studied, its computational complexity remains unexplored. The goal of this work is to fill this apparent gap in the why-provenance literature. Towards this end, we pinpoint the data complexity of why-provenance for Datalog queries and key subclasses thereof. The takeaway of our work is that why-provenance for recursive queries, even if the recursion is limited to be linear, is an intractable problem, whereas for non-recursive queries is highly tractable. Having said that, we experimentally confirm, by exploiting SAT solvers, that making why-provenance for (recursive) Datalog queries work in practice is not an unrealistic goal.

相關內容

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

A graph database is a digraph whose arcs are labeled with symbols from a fixed alphabet. A regular graph pattern (RGP) is a digraph whose edges are labeled with regular expressions over the alphabet. RGPs model navigational queries for graph databases called conjunctive regular path queries (CRPQs). A match of a CRPQ in the database is witnessed by a special navigational homomorphism of the corresponding RGP to the database. We study the complexity of deciding the existence of a homomorphism between two RGPs. Such homomorphisms model a strong type of containment between the two corresponding CRPQs. We show that this problem can be solved by an EXPTIME algorithm (while general query containmement in this context is EXPSPACE-complete). We also study the problem for restricted RGPs over a unary alphabet, that arise from some applications like XPath or SPARQL. For this case, homomorphism-based CRPQ containment is in NP. We prove that certain interesting cases are in fact polynomial-time solvable.

This paper presents Squid, a new conjunctive query synthesis algorithm for searching code with target patterns. Given positive and negative examples along with a natural language description, Squid analyzes the relations derived from the examples by a Datalog-based program analyzer and synthesizes a conjunctive query expressing the search intent. The synthesized query can be further used to search for desired grammatical constructs in the editor. To achieve high efficiency, we prune the huge search space by removing unnecessary relations and enumerating query candidates via refinement. We also introduce two quantitative metrics for query prioritization to select the queries from multiple candidates, yielding desired queries for code search. We have evaluated Squid on over thirty code search tasks. It is shown that Squid successfully synthesizes the conjunctive queries for all the tasks, taking only 2.56 seconds on average.

We study the fine-grained complexity of evaluating Boolean Conjunctive Queries and their generalization to sum-of-product problems over an arbitrary semiring. For these problems, we present a general semiring-oblivious reduction from the k-clique problem to any query structure (hypergraph). Our reduction uses the notion of embedding a graph to a hypergraph, first introduced by Marx. As a consequence of our reduction, we can show tight conditional lower bounds for many classes of hypergraphs, including cycles, Loomis-Whitney joins, some bipartite graphs, and chordal graphs. These lower bounds have a dependence on what we call the clique embedding power of a hypergraph H, which we believe is a quantity of independent interest. We show that the clique embedding power is always less than the submodular width of the hypergraph, and present a decidable algorithm for computing it. We conclude with many open problems for future research.

Chatterjee, Gmyr, and Pandurangan [PODC 2020] recently introduced the notion of awake complexity for distributed algorithms, which measures the number of rounds in which a node is awake. In the other rounds, the node is sleeping and performs no computation or communication. Measuring the number of awake rounds can be of significance in many settings of distributed computing, e.g., in sensor networks where energy consumption is of concern. In that paper, Chatterjee et al. provide an elegant randomized algorithm for the Maximal Independent Set (MIS) problem that achieves an $O(1)$ node-averaged awake complexity. That is, the average awake time among the nodes is $O(1)$ rounds. However, to achieve that, the algorithm sacrifices the more standard round complexity measure from the well-known $O(\log n)$ bound of MIS, due to Luby [STOC'85], to $O(\log^{3.41} n)$ rounds. Our first contribution is to present a simple randomized distributed MIS algorithm that, with high probability, has $O(1)$ node-averaged awake complexity and $O(\log n)$ worst-case round complexity. Our second, and more technical contribution, is to show algorithms with the same $O(1)$ node-averaged awake complexity and $O(\log n)$ worst-case round complexity for $(1+\varepsilon)$-approximation of maximum matching and $(2+\varepsilon)$-approximation of minimum vertex cover, where $\varepsilon$ denotes an arbitrary small positive constant.

Change detection is an essential and widely utilized task in remote sensing that aims to detect and analyze changes occurring in the same geographical area over time, which has broad applications in urban development, agricultural surveys, and land cover monitoring. Detecting changes in remote sensing images is a complex challenge due to various factors, including variations in image quality, noise, registration errors, illumination changes, complex landscapes, and spatial heterogeneity. In recent years, deep learning has emerged as a powerful tool for feature extraction and addressing these challenges. Its versatility has resulted in its widespread adoption for numerous image-processing tasks. This paper presents a comprehensive survey of significant advancements in change detection for remote sensing images over the past decade. We first introduce some preliminary knowledge for the change detection task, such as problem definition, datasets, evaluation metrics, and transformer basics, as well as provide a detailed taxonomy of existing algorithms from three different perspectives: algorithm granularity, supervision modes, and learning frameworks in the methodology section. This survey enables readers to gain systematic knowledge of change detection tasks from various angles. We then summarize the state-of-the-art performance on several dominant change detection datasets, providing insights into the strengths and limitations of existing algorithms. Based on our survey, some future research directions for change detection in remote sensing are well identified. This survey paper will shed some light on the community and inspire further research efforts in the change detection task.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems, while also limits its full potential. In many other areas of machine learning, AutoML has shown it is possible to automate such design choices and has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods. As such, AutoRL has been emerging as an important area of research in RL, providing promise in a variety of applications from RNA design to playing games such as Go. Given the diversity of methods and environments considered in RL, much of the research has been conducted in distinct subfields, ranging from meta-learning to evolution. In this survey we seek to unify the field of AutoRL, we provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司