A successful automated program proof is, in software verification, the ultimate triumph. In practice, however, the road to such success is paved with many failed proof attempts. Unlike a failed test, which provides concrete evidence of an actual bug in the program, a failed proof leaves the programmer in the dark. Can we instead learn something useful from it? The work reported here takes advantage of the rich internal information that some automatic provers collect about the program when attempting a proof. If the proof fails, the Proof2Test tool presented in this article uses the counterexample generated by the prover (specifically, the SMT solver underlying the proof environment Boogie, used in the AutoProof system to perform correctness proofs of contract-equipped Eiffel programs) to produce a failed test, which provides the programmer with immediately exploitable information to correct the program. The discussion presents the Proof2Test tool and demonstrates the application of the ideas and tool to a collection of representative examples.
Web tracking through third-party cookies is considered a threat to users' privacy and is supposed to be abandoned in the near future. Recently, Google proposed the Topics API framework as a privacy-friendly alternative for behavioural advertising. Using this approach, the browser builds a user profile based on navigation history, which advertisers can access. The Topics API has the possibility of becoming the new standard for behavioural advertising, thus it is necessary to fully understand its operation and find possible limitations. This paper evaluates the robustness of the Topics API to a re-identification attack where an attacker reconstructs the user profile by accumulating user's exposed topics over time to later re-identify the same user on a different website. Using real traffic traces and realistic population models, we find that the Topics API mitigates but cannot prevent re-identification to take place, as there is a sizeable chance that a user's profile is unique within a website's audience. Consequently, the probability of correct re-identification can reach 15-17%, considering a pool of 1,000 users. We offer the code and data we use in this work to stimulate further studies and the tuning of the Topic API parameters.
Many real-world recognition problems are characterized by long-tailed label distributions. These distributions make representation learning highly challenging due to limited generalization over the tail classes. If the test distribution differs from the training distribution, e.g. uniform versus long-tailed, the problem of the distribution shift needs to be addressed. A recent line of work proposes learning multiple diverse experts to tackle this issue. Ensemble diversity is encouraged by various techniques, e.g. by specializing different experts in the head and the tail classes. In this work, we take an analytical approach and extend the notion of logit adjustment to ensembles to form a Balanced Product of Experts (BalPoE). BalPoE combines a family of experts with different test-time target distributions, generalizing several previous approaches. We show how to properly define these distributions and combine the experts in order to achieve unbiased predictions, by proving that the ensemble is Fisher-consistent for minimizing the balanced error. Our theoretical analysis shows that our balanced ensemble requires calibrated experts, which we achieve in practice using mixup. We conduct extensive experiments and our method obtains new state-of-the-art results on three long-tailed datasets: CIFAR-100-LT, ImageNet-LT, and iNaturalist-2018. Our code is available at //github.com/emasa/BalPoE-CalibratedLT.
Opinion summarisation is a task that aims to condense the information presented in the source documents while retaining the core message and opinions. A summary that only represents the majority opinions will leave the minority opinions unrepresented in the summary. In this paper, we use the stance towards a certain target as an opinion. We study bias in opinion summarisation from the perspective of opinion diversity, which measures whether the model generated summary can cover a diverse set of opinions. In addition, we examine opinion similarity, a measure of how closely related two opinions are in terms of their stance on a given topic, and its relationship with opinion diversity. Through the lens of stances towards a topic, we examine opinion diversity and similarity using three debatable topics under COVID-19. Experimental results on these topics revealed that a higher degree of similarity of opinions did not indicate good diversity or fairly cover the various opinions originally presented in the source documents. We found that BART and ChatGPT can better capture diverse opinions presented in the source documents.
Digital textbooks have become an integral part of everyday learning tasks. In this work, we consider the use of digital textbooks for programming classes. Generally, students struggle with utilizing textbooks on programming to the maximum, with a possible reason being that the example programs provided as illustration of concepts in these textbooks don't offer sufficient interactivity for students, and thereby not sufficiently motivating to explore or understand these programming examples better. In our work, we explore the idea of enhancing the navigability of intelligent textbooks with the use of ``counterfactual'' questions, to make students think critically about these programs and enhance possible program comprehension. Inspired from previous works on nudging students on counter factual thinking, we present the possibility to enhance digital textbooks with questions generated using GPT.
Even as machine learning exceeds human-level performance on many applications, the generality, robustness, and rapidity of the brain's learning capabilities remain unmatched. How cognition arises from neural activity is a central open question in neuroscience, inextricable from the study of intelligence itself. A simple formal model of neural activity was proposed in Papadimitriou [2020] and has been subsequently shown, through both mathematical proofs and simulations, to be capable of implementing certain simple cognitive operations via the creation and manipulation of assemblies of neurons. However, many intelligent behaviors rely on the ability to recognize, store, and manipulate temporal sequences of stimuli (planning, language, navigation, to list a few). Here we show that, in the same model, time can be captured naturally as precedence through synaptic weights and plasticity, and, as a result, a range of computations on sequences of assemblies can be carried out. In particular, repeated presentation of a sequence of stimuli leads to the memorization of the sequence through corresponding neural assemblies: upon future presentation of any stimulus in the sequence, the corresponding assembly and its subsequent ones will be activated, one after the other, until the end of the sequence. Finally, we show that any finite state machine can be learned in a similar way, through the presentation of appropriate patterns of sequences. Through an extension of this mechanism, the model can be shown to be capable of universal computation. We support our analysis with a number of experiments to probe the limits of learning in this model in key ways. Taken together, these results provide a concrete hypothesis for the basis of the brain's remarkable abilities to compute and learn, with sequences playing a vital role.
Online platforms mediate access to opportunity: relevance-based rankings create and constrain options by allocating exposure to job openings and job candidates in hiring platforms, or sellers in a marketplace. In order to do so responsibly, these socially consequential systems employ various fairness measures and interventions, many of which seek to allocate exposure based on worthiness. Because these constructs are typically not directly observable, platforms must instead resort to using proxy scores such as relevance and infer them from behavioral signals such as searcher clicks. Yet, it remains an open question whether relevance fulfills its role as such a worthiness score in high-stakes fair rankings. In this paper, we combine perspectives and tools from the social sciences, information retrieval, and fairness in machine learning to derive a set of desired criteria that relevance scores should satisfy in order to meaningfully guide fairness interventions. We then empirically show that not all of these criteria are met in a case study of relevance inferred from biased user click data. We assess the impact of these violations on the estimated system fairness and analyze whether existing fairness interventions may mitigate the identified issues. Our analyses and results surface the pressing need for new approaches to relevance collection and generation that are suitable for use in fair ranking.
With software systems permeating our lives, we are entitled to expect that such systems are secure by design, and that such security endures throughout the use of these systems and their subsequent evolution. Although adaptive security systems have been proposed to continuously protect assets from harm, they can only mitigate threats arising from changes foreseen at design time. In this paper, we propose the notion of Sustainable Adaptive Security (SAS) which reflects such enduring protection by augmenting adaptive security systems with the capability of mitigating newly discovered threats. To achieve this objective, a SAS system should be designed by combining automation (e.g., to discover and mitigate security threats) and human intervention (e.g., to resolve uncertainties during threat discovery and mitigation). In this paper, we use a smart home example to showcase how we can engineer the activities of the MAPE (Monitor, Analysis, Planning, and Execution) loop of systems satisfying sustainable adaptive security. We suggest that using anomaly detection together with abductive reasoning can help discover new threats and guide the evolution of security requirements and controls. We also exemplify situations when humans can be involved in the execution of the activities of the MAPE loop and discuss the requirements to engineer human interventions.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.