亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With software systems permeating our lives, we are entitled to expect that such systems are secure by design, and that such security endures throughout the use of these systems and their subsequent evolution. Although adaptive security systems have been proposed to continuously protect assets from harm, they can only mitigate threats arising from changes foreseen at design time. In this paper, we propose the notion of Sustainable Adaptive Security (SAS) which reflects such enduring protection by augmenting adaptive security systems with the capability of mitigating newly discovered threats. To achieve this objective, a SAS system should be designed by combining automation (e.g., to discover and mitigate security threats) and human intervention (e.g., to resolve uncertainties during threat discovery and mitigation). In this paper, we use a smart home example to showcase how we can engineer the activities of the MAPE (Monitor, Analysis, Planning, and Execution) loop of systems satisfying sustainable adaptive security. We suggest that using anomaly detection together with abductive reasoning can help discover new threats and guide the evolution of security requirements and controls. We also exemplify situations when humans can be involved in the execution of the activities of the MAPE loop and discuss the requirements to engineer human interventions.

相關內容

靜態分析越來越被認為是程序驗證、錯誤檢測、編譯器優化、程序理解和軟件維護的基本工具。國際靜態分析系列研討會(SAS)是展示該領域理論、實踐和應用進展的主要場所。官網鏈接: · RTSP · state-of-the-art · 講稿 · Performer ·
2023 年 7 月 27 日

The growing adoption of the Internet of Things (IoT) has brought a significant increase in attacks targeting those devices. Machine learning (ML) methods have shown promising results for intrusion detection; however, the scarcity of IoT datasets remains a limiting factor in developing ML-based security systems for IoT scenarios. Static datasets get outdated due to evolving IoT architectures and threat landscape; meanwhile, the testbeds used to generate them are rarely published. This paper presents the Gotham testbed, a reproducible and flexible security testbed extendable to accommodate new emulated devices, services or attackers. Gotham is used to build an IoT scenario composed of 100 emulated devices communicating via MQTT, CoAP and RTSP protocols, among others, in a topology composed of 30 switches and 10 routers. The scenario presents three threat actors, including the entire Mirai botnet lifecycle and additional red-teaming tools performing DoS, scanning, and attacks targeting IoT protocols. The testbed has many purposes, including a cyber range, testing security solutions, and capturing network and application data to generate datasets. We hope that researchers can leverage and adapt Gotham to include other devices, state-of-the-art attacks and topologies to share scenarios and datasets that reflect the current IoT settings and threat landscape.

For smart homes to be safe homes, they must be designed with security in mind. Yet, despite the widespread proliferation of connected digital technologies in the home environment, there is a lack of research evaluating the security vulnerabilities and potential risks present within these systems. Our research presents a comprehensive methodology for conducting systematic IoT security attacks, intercepting network traffic and evaluating the security risks of smart home devices. We perform hundreds of automated experiments using 11 popular commercial IoT devices when deployed in a testbed, exposed to a series of real deployed attacks (flooding, port scanning and OS scanning). Our findings indicate that these devices are vulnerable to security attacks and our results are relevant to the security research community, device engineers and the users who rely on these technologies in their daily lives.

With the development of Big data technology, data analysis has become increasingly important. Traditional clustering algorithms such as K-means are highly sensitive to the initial centroid selection and perform poorly on non-convex datasets. In this paper, we address these problems by proposing a data-driven Bregman divergence parameter optimization clustering algorithm (DBGSA), which combines the Universal Gravitational Algorithm to bring similar points closer in the dataset. We construct a gravitational coefficient equation with a special property that gradually reduces the influence factor as the iteration progresses. Furthermore, we introduce the Bregman divergence generalized power mean information loss minimization to identify cluster centers and build a hyperparameter identification optimization model, which effectively solves the problems of manual adjustment and uncertainty in the improved dataset. Extensive experiments are conducted on four simulated datasets and six real datasets. The results demonstrate that DBGSA significantly improves the accuracy of various clustering algorithms by an average of 63.8\% compared to other similar approaches like enhanced clustering algorithms and improved datasets. Additionally, a three-dimensional grid search was established to compare the effects of different parameter values within threshold conditions, and it was discovered the parameter set provided by our model is optimal. This finding provides strong evidence of the high accuracy and robustness of the algorithm.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as domain transfer adaptation when it needs knowledge correspondence between different moments. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. Transfer adaptation learning aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance. This paper surveys the recent advances in transfer adaptation learning methodology and potential benchmarks. Broader challenges being faced by transfer adaptation learning researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation, and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey provides researchers a framework for better understanding and identifying the research status, challenges and future directions of the field.

北京阿比特科技有限公司