亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our paper discovers a new trade-off of using regression adjustments (RAs) in causal inference under covariate-adaptive randomizations (CARs). On one hand, RAs can improve the efficiency of causal estimators by incorporating information from covariates that are not used in the randomization. On the other hand, RAs can degrade estimation efficiency due to their estimation errors, which are not asymptotically negligible when the number of regressors is of the same order as the sample size. Ignoring the estimation errors of RAs may result in serious over-rejection of causal inference under the null hypothesis. To address the issue, we develop a unified inference theory for the regression-adjusted average treatment effect (ATE) estimator under CARs. Our theory has two key features: (1) it ensures the exact asymptotic size under the null hypothesis, regardless of whether the number of covariates is fixed or diverges no faster than the sample size; and (2) it guarantees weak efficiency improvement over the ATE estimator without adjustments.

相關內容

Visual commonsense reasoning (VCR) is a challenging multi-modal task, which requires high-level cognition and commonsense reasoning ability about the real world. In recent years, large-scale pre-training approaches have been developed and promoted the state-of-the-art performance of VCR. However, the existing approaches almost employ the BERT-like objectives to learn multi-modal representations. These objectives motivated from the text-domain are insufficient for the excavation on the complex scenario of visual modality. Most importantly, the spatial distribution of the visual objects is basically neglected. To address the above issue, we propose to construct the spatial relation graph based on the given visual scenario. Further, we design two pre-training tasks named object position regression (OPR) and spatial relation classification (SRC) to learn to reconstruct the spatial relation graph respectively. Quantitative analysis suggests that the proposed method can guide the representations to maintain more spatial context and facilitate the attention on the essential visual regions for reasoning. We achieve the state-of-the-art results on VCR and two other vision-and-language reasoning tasks VQA, and NLVR.

The improvements in received signal power brought about by a reflective intelligent surface (RIS) might be overstated if background propagation mechanisms such as reflections, scattering, and diffraction are ignored. This paper addresses this issue for non-line-of-sight indoor settings, contrasting the energy conveyed by an RIS with the energy already reaching the receiver through environmental reflections. And, to prevent artifacts, such naturally occurring reflections are not modeled via approximate methods, but rather through a rigorous physics-based formulation. It is found that the environment contributes a level of energy commensurate with that of an ideal RIS of considerable size; to have substantial impact, an actual RIS would have to generously exceed this size.

This paper proposes the use of causal modeling to detect and mitigate algorithmic bias. We provide a brief description of causal modeling and a general overview of our approach. We then use the Adult dataset, which is available for download from the UC Irvine Machine Learning Repository, to develop (1) a prediction model, which is treated as a black box, and (2) a causal model for bias mitigation. In this paper, we focus on gender bias and the problem of binary classification. We show that gender bias in the prediction model is statistically significant at the 0.05 level. We demonstrate the effectiveness of the causal model in mitigating gender bias by cross-validation. Furthermore, we show that the overall classification accuracy is improved slightly. Our novel approach is intuitive, easy-to-use, and can be implemented using existing statistical software tools such as "lavaan" in R. Hence, it enhances explainability and promotes trust.

Electric vehicle (EV) adoption in long-distance logistics faces challenges such as range anxiety and uneven distribution of charging stations. Two pivotal questions emerge: How can EVs be efficiently routed in a charging network considering range limits, charging speeds and prices? And, can the existing charging infrastructure sustain the increasing demand for EVs in long-distance logistics? This paper addresses these questions by introducing a novel theoretical and computational framework to study the EV network flow problems. We present an EV network flow model that incorporates range constraints and nonlinear charging rates, and identify conditions under which polynomial-time solutions can be obtained for optimal single EV routing, maximum flow, and minimum-cost flow problems. Our findings provide insights for optimizing EV routing in logistics, ensuring an efficient and sustainable future.

Weighted sum-rate (WSR) maximization plays a critical role in communication system design. This paper examines three optimization methods for WSR maximization, which ensure convergence to stationary points: two block coordinate ascent (BCA) algorithms, namely, weighted sum-minimum mean-square error (WMMSE) and WSR maximization via fractional programming (WSR-FP), along with a minorization-maximization (MM) algorithm, WSR maximization via MM (WSR-MM). Our contributions are threefold. Firstly, we delineate the exact relationships among WMMSE, WSR-FP, and WSR-MM, which, despite their extensive use in the literature, lack a comprehensive comparative study. By probing the theoretical underpinnings linking the BCA and MM algorithmic frameworks, we reveal the direct correlations between the equivalent transformation techniques, essential to the development of WMMSE and WSR-FP, and the surrogate functions pivotal to WSR-MM. Secondly, we propose a novel algorithm, WSR-MM+, harnessing the flexibility of selecting surrogate functions in MM framework. By circumventing the repeated matrix inversions in the search for optimal Lagrange multipliers in existing algorithms, WSR-MM+ significantly reduces the computational load per iteration and accelerates convergence. Thirdly, we reconceptualize WSR-MM+ within the BCA framework, introducing a new equivalent transform, which gives rise to an enhanced version of WSR-FP, named as WSR-FP+. We further demonstrate that WSR-MM+ can be construed as the basic gradient projection method. This perspective yields a deeper understanding into its computational intricacies. Numerical simulations corroborate the connections between WMMSE, WSR-FP, and WSR-MM and confirm the efficacy of the proposed WSR-MM+ and WSR-FP+ algorithms.

In this paper we present a non-local numerical scheme based on the Local Discontinuous Galerkin method for a non-local diffusive partial differential equation with application to traffic flow. In this model, the velocity is determined by both the average of the traffic density as well as the changes in the traffic density at a neighborhood of each point. We discuss nonphysical behaviors that can arise when including diffusion, and our measures to prevent them in our model. The numerical results suggest that this is an accurate method for solving this type of equation and that the model can capture desired traffic flow behavior. We show that computation of the non-local convolution results in $\mathcal{O}(n^2)$ complexity, but the increased computation time can be mitigated with high-order schemes like the one proposed.

In this paper, we propose leveraging the active reconfigurable intelligence surface (RIS) to support reliable gradient aggregation for over-the-air computation (AirComp) enabled federated learning (FL) systems. An analysis of the FL convergence property reveals that minimizing gradient aggregation errors in each training round is crucial for narrowing the convergence gap. As such, we formulate an optimization problem, aiming to minimize these errors by jointly optimizing the transceiver design and RIS configuration. To handle the formulated highly non-convex problem, we devise a two-layer alternative optimization framework to decompose it into several convex subproblems, each solvable optimally. Simulation results demonstrate the superiority of the active RIS in reducing gradient aggregation errors compared to its passive counterpart.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司