亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI systems are not intrinsically neutral and biases trickle in any type of technological tool. In particular when dealing with people, AI algorithms reflect technical errors originating with mislabeled data. As they feed wrong and discriminatory classifications, perpetuating structural racism and marginalization, these systems are not systematically guarded against bias. In this article we consider the problem of bias in AI systems from the point of view of Information Quality dimensions. We illustrate potential improvements of a bias mitigation tool in gender classification errors, referring to two typically difficult contexts: the classification of non-binary individuals and the classification of transgender individuals. The identification of data quality dimensions to implement in bias mitigation tool may help achieve more fairness. Hence, we propose to consider this issue in terms of completeness, consistency, timeliness and reliability, and offer some theoretical results.

相關內容

This paper presents a novel framework for structured argumentation, named extend argumentative decision graph ($xADG$). It is an extension of argumentative decision graphs built upon Dung's abstract argumentation graphs. The $xADG$ framework allows for arguments to use boolean logic operators and multiple premises (supports) within their internal structure, resulting in more concise argumentation graphs that may be easier for users to understand. The study presents a methodology for construction of $xADGs$ and evaluates their size and predictive capacity for classification tasks of varying magnitudes. Resulting $xADGs$ achieved strong (balanced) accuracy, which was accomplished through an input decision tree, while also reducing the average number of supports needed to reach a conclusion. The results further indicated that it is possible to construct plausibly understandable $xADGs$ that outperform other techniques for building $ADGs$ in terms of predictive capacity and overall size. In summary, the study suggests that $xADG$ represents a promising framework to developing more concise argumentative models that can be used for classification tasks and knowledge discovery, acquisition, and refinement.

Multimodal emotion recognition is an active research topic in the field of artificial intelligence. It aims to integrate multimodal clues (including acoustic, visual, and lexical clues) and recognize human emotional states from these clues. Current works generally assume correct emotion labels for benchmark datasets and focus on building more effective architectures to achieve better performance. But due to the ambiguity and subjectivity of emotion, existing datasets cannot achieve high annotation consistency (i.e., labels may be inaccurate), making it difficult for models developed on these datasets to meet the demand of practical applications. To address this problem, the core is to improve the reliability of emotion annotations. Therefore, we propose a new task called ``Explainable Multimodal Emotion Reasoning (EMER)''. Unlike previous works that only predict emotional states, EMER further explains the reasons behind these predictions to enhance their reliability. In this task, rationality is the only evaluation metric. As long as the emotional reasoning process for a given video is plausible, the prediction is correct. In this paper, we make an initial attempt at this task and establish a benchmark dataset, baselines, and evaluation metrics. We aim to address the long-standing problem of label ambiguity and point a way to the next-generation affective computing techniques. In addition, EMER can also be exploited to evaluate the audio-video-text understanding ability of recent multimodal large language models. Code and data: //github.com/zeroQiaoba/Explainable-Multimodal-Emotion-Reasoning.

Deep neural networks (DNNs) have made significant progress, but often suffer from fairness issues, as deep models typically show distinct accuracy differences among certain subgroups (e.g., males and females). Existing research addresses this critical issue by employing fairness-aware loss functions to constrain the last-layer outputs and directly regularize DNNs. Although the fairness of DNNs is improved, it is unclear how the trained network makes a fair prediction, which limits future fairness improvements. In this paper, we investigate fairness from the perspective of decision rationale and define the parameter parity score to characterize the fair decision process of networks by analyzing neuron influence in various subgroups. Extensive empirical studies show that the unfair issue could arise from the unaligned decision rationales of subgroups. Existing fairness regularization terms fail to achieve decision rationale alignment because they only constrain last-layer outputs while ignoring intermediate neuron alignment. To address the issue, we formulate the fairness as a new task, i.e., decision rationale alignment that requires DNNs' neurons to have consistent responses on subgroups at both intermediate processes and the final prediction. To make this idea practical during optimization, we relax the naive objective function and propose gradient-guided parity alignment, which encourages gradient-weighted consistency of neurons across subgroups. Extensive experiments on a variety of datasets show that our method can significantly enhance fairness while sustaining a high level of accuracy and outperforming other approaches by a wide margin.

Current perceptual similarity metrics operate at the level of pixels and patches. These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level similarities and differences in image layout, object pose, and semantic content. In this paper, we develop a perceptual metric that assesses images holistically. Our first step is to collect a new dataset of human similarity judgments over image pairs that are alike in diverse ways. Critical to this dataset is that judgments are nearly automatic and shared by all observers. To achieve this we use recent text-to-image models to create synthetic pairs that are perturbed along various dimensions. We observe that popular perceptual metrics fall short of explaining our new data, and we introduce a new metric, DreamSim, tuned to better align with human perception. We analyze how our metric is affected by different visual attributes, and find that it focuses heavily on foreground objects and semantic content while also being sensitive to color and layout. Notably, despite being trained on synthetic data, our metric generalizes to real images, giving strong results on retrieval and reconstruction tasks. Furthermore, our metric outperforms both prior learned metrics and recent large vision models on these tasks.

The analysis of survey data is a frequently arising issue in clinical trials, particularly when capturing quantities which are difficult to measure using, e.g., a technical device or a biochemical procedure. Typical examples are questionnaires about patient's well-being, pain, anxiety, quality of life or consent to an intervention. Data is captured on a discrete scale containing only a limited (usually three to ten) number of possible answers, of which the respondent has to pick the answer which fits best his personal opinion to the question. This data is generally located on an ordinal scale as answers can usually be arranged in an increasing order, e.g., "bad", "neutral", "good" for well-being or "none", "mild", "moderate", "severe" for pain. Since responses are often stored numerically for data processing purposes, analysis of survey data using ordinary linear regression (OLR) models seems to be natural. However, OLR assumptions are often not met as linear regression requires a constant variability of the response variable and can yield predictions out of the range of response categories. Moreover, in doing so, one only gains insights about the mean response which might, depending on the response distribution, not be very representative. In contrast, ordinal regression models are able to provide probability estimates for all response categories and thus yield information about the full response scale rather than just the mean. Although these methods are well described in the literature, they seem to be rarely applied to biomedical or survey data. In this paper, we give a concise overview about fundamentals of ordinal models, applications to a real data set, outline usage of state-of-the-art-software to do so and point out strengths, limitations and typical pitfalls. This article is a companion work to a current vignette-based structured interview study in paediatric anaesthesia.

We consider the problem of online allocation subject to a long-term fairness penalty. Contrary to existing works, however, we do not assume that the decision-maker observes the protected attributes -- which is often unrealistic in practice. Instead they can purchase data that help estimate them from sources of different quality; and hence reduce the fairness penalty at some cost. We model this problem as a multi-armed bandit problem where each arm corresponds to the choice of a data source, coupled with the online allocation problem. We propose an algorithm that jointly solves both problems and show that it has a regret bounded by $\mathcal{O}(\sqrt{T})$. A key difficulty is that the rewards received by selecting a source are correlated by the fairness penalty, which leads to a need for randomization (despite a stochastic setting). Our algorithm takes into account contextual information available before the source selection, and can adapt to many different fairness notions. We also show that in some instances, the estimates used can be learned on the fly.

The Research Excellence Framework (REF) is a periodic UK-wide assessment of the quality of published research in universities. The most recent REF was in 2014, and the next will be in 2021. The published results of REF2014 include a categorical `quality profile' for each unit of assessment (typically a university department), reporting what percentage of the unit's REF-submitted research outputs were assessed as being at each of four quality levels (labelled 4*, 3*, 2* and 1*). Also in the public domain are the original submissions made to REF2014, which include -- for each unit of assessment -- publication details of the REF-submitted research outputs. In this work, we address the question: to what extent can a REF quality profile for research outputs be attributed to the journals in which (most of) those outputs were published? The data are the published submissions and results from REF2014. The main statistical challenge comes from the fact that REF quality profiles are available only at the aggregated level of whole units of assessment: the REF panel's assessment of each individual research output is not made public. Our research question is thus an `ecological inference' problem, which demands special care in model formulation and methodology. The analysis is based on logit models in which journal-specific parameters are regularized via prior `pseudo-data'. We develop a lack-of-fit measure for the extent to which REF scores appear to depend on publication venues rather than research quality or institution-level differences. Results are presented for several research fields.

One of the most interesting tools that have recently entered the data science toolbox is topological data analysis (TDA). With the explosion of available data sizes and dimensions, identifying and extracting the underlying structure of a given dataset is a fundamental challenge in data science, and TDA provides a methodology for analyzing the shape of a dataset using tools and prospects from algebraic topology. However, the computational complexity makes it quickly infeasible to process large datasets, especially those with high dimensions. Here, we introduce a preprocessing strategy called the Characteristic Lattice Algorithm (CLA), which allows users to reduce the size of a given dataset as desired while maintaining geometric and topological features in order to make the computation of TDA feasible or to shorten its computation time. In addition, we derive a stability theorem and an upper bound of the barcode errors for CLA based on the bottleneck distance.

The Diverse Communities Data Excerpts are the core of a National Institute of Standards and Technology (NIST) program to strengthen understanding of tabular data deidentification technologies such as synthetic data. Synthetic data is an ambitious attempt to democratize the benefits of big data; it uses generative models to recreate sensitive personal data with new records for public release. However, it is vulnerable to the same bias and privacy issues that impact other machine learning applications, and can even amplify those issues. When deidentified data distributions introduce bias or artifacts, or leak sensitive information, they propagate these problems to downstream applications. Furthermore, real-world survey conditions such as diverse subpopulations, heterogeneous non-ordinal data spaces, and complex dependencies between features pose specific challenges for synthetic data algorithms. These observations motivate the need for real, diverse, and complex benchmark data to support a robust understanding of algorithm behavior. This paper introduces four contributions: new theoretical work on the relationship between diverse populations and challenges for equitable deidentification; public benchmark data focused on diverse populations and challenging features curated from the American Community Survey; an open source suite of evaluation metrology for deidentified datasets; and an archive of evaluation results on a broad collection of deidentification techniques. The initial set of evaluation results demonstrate the suitability of these tools for investigations in this field.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

北京阿比特科技有限公司