亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper describes how to `Free the Qubit' for art, by creating standalone quantum musical effects and instruments. Previously released quantum simulator code for an ARM-based Raspberry Pi Pico embedded microcontroller is utilised here, and several examples are built demonstrating different methods of utilising embedded resources: The first is a Quantum MIDI processor that generates additional notes for accompaniment and unique quantum generated instruments based on the input notes, decoded and passed through a quantum circuit in an embedded simulator. The second is a Quantum Distortion module that changes an instrument's raw sound according to a quantum circuit, which is presented in two forms; a self-contained Quantum Stylophone, and an effect module plugin called 'QubitCrusher' for the Korg Nu:Tekt NTS-1. This paper also discusses future work and directions for quantum instruments, and provides all examples as open source. This is, to the author's knowledge, the first example of embedded Quantum Simulators for Instruments of Music (another QSIM).

相關內容

We investigate the benefit of combining blind audio recordings with 3D scene information for novel-view acoustic synthesis. Given audio recordings from 2-4 microphones and the 3D geometry and material of a scene containing multiple unknown sound sources, we estimate the sound anywhere in the scene. We identify the main challenges of novel-view acoustic synthesis as sound source localization, separation, and dereverberation. While naively training an end-to-end network fails to produce high-quality results, we show that incorporating room impulse responses (RIRs) derived from 3D reconstructed rooms enables the same network to jointly tackle these tasks. Our method outperforms existing methods designed for the individual tasks, demonstrating its effectiveness at utilizing 3D visual information. In a simulated study on the Matterport3D-NVAS dataset, our model achieves near-perfect accuracy on source localization, a PSNR of 26.44 dB and a SDR of 14.23 dB for source separation and dereverberation, resulting in a PSNR of 25.55 dB and a SDR of 14.20 dB on novel-view acoustic synthesis. Code, pretrained model, and video results are available on the project webpage (//github.com/apple/ml-nvas3d).

This paper develops a Blue-Green Infrastructure (BGI) performance evaluation approach by integrating a Non-dominated Sorting Genetic Algorithm II (NSGA-II) with a detailed hydrodynamic model. The proposed Cost OptimisatioN Framework for Implementing blue-Green infrastructURE (CONFIGURE), with a simplified problem-framing process and efficient genetic operations, can be connected to any flood simulation model. In this study, CONFIGURE is integrated with the CityCAT hydrodynamic model to optimise the locations and combinations of permeable surfaces. Permeable zones with four different levels of spatial discretisation are designed to evaluate their efficiency for 100-year and 30-year return period rainstorms. Overall, the framework performs effectively for the given scenarios. The application of the detailed hydrodynamic model explicitly captures the functioning of permeable features to provide the optimal locations for their deployment. Moreover, the size and the location of the permeable surfaces and the intensity of the rainstorm events are the critical performance parameters for economical BGI deployment.

This paper presents the Smooth Number Message Authentication Code (SNMAC) for the context of lightweight IoT devices. The proposal is based on the use of smooth numbers in the field of cryptography, and investigates how one can use them to improve the security and performance of various algorithms or security constructs. The literature findings suggest that current IoT solutions are viable and promising, yet they should explore the potential usage of smooth numbers. The methodology involves several processes, including the design, implementation, and results evaluation. After introducing the algorithm, provides a detailed account of the experimental performance analysis of the SNMAC solution, showcasing its efficiency in real-world scenarios. Furthermore, the paper also explores the security aspects of the proposed SNMAC algorithm, offering valuable insights into its robustness and applicability for ensuring secure communication within IoT environments.

We present an implementation of a Web3 platform that leverages the Groth16 Zero-Knowledge Proof schema to verify the validity of questionnaire results within Smart Contracts. Our approach ensures that the answer key of the questionnaire remains undisclosed throughout the verification process, while ensuring that the evaluation is done fairly. To accomplish this, users respond to a series of questions, and their answers are encoded and securely transmitted to a hidden backend. The backend then performs an evaluation of the user's answers, generating the overall result of the questionnaire. Additionally, it generates a Zero-Knowledge Proof, attesting that the answers were appropriately evaluated against a valid set of constraints. Next, the user submits their result along with the proof to a Smart Contract, which verifies their validity and issues a non-fungible token (NFT) as an attestation of the user's test result. In this research, we implemented the Zero-Knowledge functionality using Circom 2 and deployed the Smart Contract using Solidity, thereby showcasing a practical and secure solution for questionnaire validity verification in the context of Smart Contracts.

In this paper, we explore audio-editing with non-rigid text edits. We show that the proposed editing pipeline is able to create audio edits that remain faithful to the input audio. We explore text prompts that perform addition, style transfer, and in-painting. We quantitatively and qualitatively show that the edits are able to obtain results which outperform Audio-LDM, a recently released text-prompted audio generation model. Qualitative inspection of the results points out that the edits given by our approach remain more faithful to the input audio in terms of keeping the original onsets and offsets of the audio events.

In this paper, we propose a novel method for 3D scene and object reconstruction from sparse multi-view images. Different from previous methods that leverage extra information such as depth or generalizable features across scenes, our approach leverages the scene properties embedded in the multi-view inputs to create precise pseudo-labels for optimization without any prior training. Specifically, we introduce a geometry-guided approach that improves surface reconstruction accuracy from sparse views by leveraging spherical harmonics to predict the novel radiance while holistically considering all color observations for a point in the scene. Also, our pipeline exploits proxy geometry and correctly handles the occlusion in generating the pseudo-labels of radiance, which previous image-warping methods fail to avoid. Our method, dubbed Ray Augmentation (RayAug), achieves superior results on DTU and Blender datasets without requiring prior training, demonstrating its effectiveness in addressing the problem of sparse view reconstruction. Our pipeline is flexible and can be integrated into other implicit neural reconstruction methods for sparse views.

We introduce DISSC, a novel, lightweight method that converts the rhythm, pitch contour and timbre of a recording to a target speaker in a textless manner. Unlike DISSC, most voice conversion (VC) methods focus primarily on timbre, and ignore people's unique speaking style (prosody). The proposed approach uses a pretrained, self-supervised model for encoding speech to discrete units, which makes it simple, effective, and fast to train. All conversion modules are only trained on reconstruction like tasks, thus suitable for any-to-many VC with no paired data. We introduce a suite of quantitative and qualitative evaluation metrics for this setup, and empirically demonstrate that DISSC significantly outperforms the evaluated baselines. Code and samples are available at //pages.cs.huji.ac.il/adiyoss-lab/dissc/.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司