亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The subrank of tensors is a measure of how much a tensor can be ''diagonalized''. This parameter was introduced by Strassen to study fast matrix multiplication algorithms in algebraic complexity theory and is closely related to many central tensor parameters (e.g. slice rank, partition rank, analytic rank, geometric rank, G-stable rank) and problems in combinatorics, computer science and quantum information theory. Strassen (J. Reine Angew. Math., 1988) proved that there is a gap in the subrank when taking large powers under the tensor product: either the subrank of all powers is at most one, or it grows as a power of a constant strictly larger than one. In this paper, we precisely determine this constant for tensors of any order. Additionally, for tensors of order three, we prove that there is a second gap in the possible rates of growth. Our results strengthen the recent work of Costa and Dalai (J. Comb. Theory, Ser. A, 2021), who proved a similar gap for the slice rank. Our theorem on the subrank has wider applications by implying such gaps not only for the slice rank, but for any ``normalized monotone''. In order to prove the main result, we characterize when a tensor has a very structured tensor (the W-tensor) in its orbit closure. Our methods include degenerations in Grassmanians, which may be of independent interest.

相關內容

Sensory substitution or enhancement techniques have been proposed to enable deaf or hard of hearing (DHH) people to listen to and even compose music. However, little is known about how such techniques enhance DHH people's music experience. Since deafness is a spectrum -- as are DHH people's preferences and perceptions of music -- a more situated understanding of their interaction with music is needed. To understand the music experience of this population, we conducted social media analyses, both qualitatively and quantitatively, in the deaf and hard of hearing Reddit communities. Our content analysis revealed that DHH people leveraged sign language and visual/haptic cues to feel the music and preferred familiar, non-lyrical, instrument-heavy, and loud music. In addition, hearing aids were not customized for music, and the visual/haptic techniques developed were not widely adopted by DHH people, leading to their suboptimal music experiences. The DHH community embodied mutual support among music lovers, evidenced by active information sharing and Q&A around music and hearing loss. We reflect on design justice for DHH people's music experience and propose practical design implications to create a more accessible music experience for them.

Stride determines the distance between adjacent filter positions as the filter moves across the input. A fixed stride causes important information contained in the image can not be captured, so that important information is not classified. Therefore, in previous research, the DiffStride Method was applied, namely the Strided Convolution Method with which it can learn its own stride value. Severe Quantization and a constraining lower bound on preserved information are arises with Max Pooling Downsampling Method. Spectral Pooling reduce the constraint lower bound on preserved information by cutting off the representation in the frequency domain. In this research a CNN Model is proposed with the Downsampling Learnable Stride Technique performed by Backpropagation combined with the Spectral Pooling Technique. Diffstride and Spectral Pooling techniques are expected to maintain most of the information contained in the image. In this study, we compare the Hybrid Method, which is a combined implementation of Spectral Pooling and DiffStride against the Baseline Method, which is the DiffStride implementation on ResNet 18. The accuracy result of the DiffStride combination with Spectral Pooling improves over DiffStride which is baseline method by 0.0094. This shows that the Hybrid Method can maintain most of the information by cutting of the representation in the frequency domain and determine the stride of the learning result through Backpropagation.

Quasiperiodic systems are important space-filling ordered structures, without decay and translational invariance. How to solve quasiperiodic systems accurately and efficiently is of great challenge. A useful approach, the projection method (PM) [J. Comput. Phys., 256: 428, 2014], has been proposed to compute quasiperiodic systems. Various studies have demonstrated that the PM is an accurate and efficient method to solve quasiperiodic systems. However, there is a lack of theoretical analysis of PM. In this paper, we present a rigorous convergence analysis of the PM by establishing a mathematical framework of quasiperiodic functions and their high-dimensional periodic functions. We also give a theoretical analysis of quasiperiodic spectral method (QSM) based on this framework. Results demonstrate that PM and QSM both have exponential decay, and the QSM (PM) is a generalization of the periodic Fourier spectral (pseudo-spectral) method. Then we analyze the computational complexity of PM and QSM in calculating quasiperiodic systems. The PM can use fast Fourier transform, while the QSM cannot. Moreover, we investigate the accuracy and efficiency of PM, QSM and periodic approximation method in solving the linear time-dependent quasiperiodic Schr\"{o}dinger equation.

Verifiable credentials are a digital analogue of physical credentials. Their authenticity and integrity are protected by means of cryptographic techniques, and they can be presented to verifiers to reveal attributes or even predicates about the attributes included in the credential. One way to preserve privacy during presentation consists in selectively disclosing the attributes in a credential. In this paper we present the most widespread cryptographic mechanisms used to enable selective disclosure of attributes identifying two categories: the ones based on hiding commitments - e.g., mdl ISO/IEC 18013-5 - and the ones based on non-interactive zero-knowledge proofs - e.g., BBS signatures. We also include a description of the cryptographic primitives used to design such cryptographic mechanisms. We describe the design of the cryptographic mechanisms and compare them by performing an analysis on their standard maturity in terms of standardization, cryptographic agility and quantum safety, then we compare the features that they support with main focus on the unlinkability of presentations, the ability to create predicate proofs and support for threshold credential issuance. Finally we perform an experimental evaluation based on the Rust open source implementations that we have considered most relevant. In particular we evaluate the size of credentials and presentations built using different cryptographic mechanisms and the time needed to generate and verify them. We also highlight some trade-offs that must be considered in the instantiation of the cryptographic mechanisms.

Many causal and structural parameters are linear functionals of an underlying regression. The Riesz representer is a key component in the asymptotic variance of a semiparametrically estimated linear functional. We propose an adversarial framework to estimate the Riesz representer using general function spaces. We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases. Furthermore, we use critical radius theory -- in place of Donsker theory -- to prove asymptotic normality without sample splitting, uncovering a ``complexity-rate robustness'' condition. This condition has practical consequences: inference without sample splitting is possible in several machine learning settings, which may improve finite sample performance compared to sample splitting. Our estimators achieve nominal coverage in highly nonlinear simulations where previous methods break down. They shed new light on the heterogeneous effects of matching grants.

Strategies for partially observable Markov decision processes (POMDP) typically require memory. One way to represent this memory is via automata. We present a method to learn an automaton representation of a strategy using the L*-algorithm. Compared to the tabular representation of a strategy, the resulting automaton is dramatically smaller and thus also more explainable. Moreover, in the learning process, our heuristics may even improve the strategy's performance. In contrast to approaches that synthesize an automaton directly from the POMDP thereby solving it, our approach is incomparably more scalable.

Over the past two decades, the cloud computing paradigm has gradually attracted more popularity due to its efficient resource usage and simple service access model. Virtualization technology is the fundamental element of cloud computing that brings several benefits to cloud users and providers, such as workload isolation, energy efficiency, server consolidation, and cost reduction. This paper examines the combination of operating system-level virtualization (containers) and hardware-level virtualization (virtual machines). To this end, the performance of containers running on top of virtual machines is experimentally compared with standalone virtual machines and containers based on different hardware resources, including the processor, main memory, disk, and network in a real testbed by running the most commonly used benchmarks. Paravirtualization and full virtualization as well as type 1 and type 2 hypervisors are covered in this study. In addition, three prevalent containerization platforms are examined.

It is shown that a Hopfield recurrent neural network, informed by experimentally derived brain topology, recovers the scaling picture recently introduced by Deco et al., according to which the process of information transfer within the human brain shows spatially correlated patterns qualitatively similar to those displayed by turbulent flows. Although both models employ a coupling strength which decays exponentially with the euclidean distance between the nodes, their mathematical nature is widely different, Hopf oscillators versus Hopfield neural network. Hence, their convergence suggests a remarkable robustness of the aforementioned scaling picture. Furthermore, the present analysis shows that the Hopfield model brain remains functional by removing links above about five decay lengths, corresponding to about one sixth of the size of the global brain. This suggests that, in terms of connectivity decay length, the Hopfield brain functions in a sort of intermediate "turbulent liquid"-like state, whose essential connections are the intermediate ones between the connectivity decay length and the global brain size. This "turbulent-like liquid" appears to be more spiky than actual turbulent fluids, with a scaling exponent around $2/5$ instead of $2/3$.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

北京阿比特科技有限公司