亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Instruction tuning benefits from large and diverse datasets, however creating such datasets involves a high cost of human labeling. While synthetic datasets generated by large language models (LLMs) have partly solved this issue, they often contain low-quality data. One effective solution is selectively annotating unlabelled instructions, especially given the relative ease of acquiring unlabeled instructions or texts from various sources. However, how to select unlabelled instructions is not well-explored, especially in the context of LLMs. Further, traditional data selection methods, relying on input embedding space density, tend to underestimate instruction sample complexity, whereas those based on model prediction uncertainty often struggle with synthetic label quality. Therefore, we introduce SelectLLM, an alternative framework that leverages the capabilities of LLMs to more effectively select unlabeled instructions. SelectLLM consists of two key steps: Coreset-based clustering of unlabelled instructions for diversity and then prompting a LLM to identify the most beneficial instructions within each cluster. Our experiments demonstrate that SelectLLM matches or outperforms other state-of-the-art methods in instruction tuning benchmarks. It exhibits remarkable consistency across human and synthetic datasets, along with better cross-dataset generalization, as evidenced by a 10% performance improvement on the Cleaned Alpaca test set when trained on Dolly data. All code and data are publicly available (//github.com/minnesotanlp/select-llm).

相關內容

Recently, there is a surge in interest surrounding video large language models (Video LLMs). However, existing benchmarks fail to provide a comprehensive feedback on the temporal perception ability of Video LLMs. On the one hand, most of them are unable to distinguish between different temporal aspects (e.g., speed, direction) and thus cannot reflect the nuanced performance on these specific aspects. On the other hand, they are limited in the diversity of task formats (e.g., only multi-choice QA), which hinders the understanding of how temporal perception performance may vary across different types of tasks. Motivated by these two problems, we propose the \textbf{TempCompass} benchmark, which introduces a diversity of temporal aspects and task formats. To collect high-quality test data, we devise two novel strategies: (1) In video collection, we construct conflicting videos that share the same static content but differ in a specific temporal aspect, which prevents Video LLMs from leveraging single-frame bias or language priors. (2) To collect the task instructions, we propose a paradigm where humans first annotate meta-information for a video and then an LLM generates the instruction. We also design an LLM-based approach to automatically and accurately evaluate the responses from Video LLMs. Based on TempCompass, we comprehensively evaluate 8 state-of-the-art (SOTA) Video LLMs and 3 Image LLMs, and reveal the discerning fact that these models exhibit notably poor temporal perception ability. Our data will be available at //github.com/llyx97/TempCompass.

The Bayesian posterior distribution can only be evaluated up-to a constant of proportionality, which makes simulation and consistent estimation challenging. Classical consistent Bayesian methods such as sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) have unbounded time complexity requirements. We develop a fully parallel sequential Monte Carlo (pSMC) method which provably delivers parallel strong scaling, i.e. the time complexity (and per-node memory) remains bounded if the number of asynchronous processes is allowed to grow. More precisely, the pSMC has a theoretical convergence rate of Mean Square Error (MSE)$ = O(1/NP)$, where $N$ denotes the number of communicating samples in each processor and $P$ denotes the number of processors. In particular, for suitably-large problem-dependent $N$, as $P \rightarrow \infty$ the method converges to infinitesimal accuracy MSE$=O(\varepsilon^2)$ with a fixed finite time-complexity Cost$=O(1)$ and with no efficiency leakage, i.e. computational complexity Cost$=O(\varepsilon^{-2})$. A number of Bayesian inference problems are taken into consideration to compare the pSMC and MCMC methods.

End-to-end autonomous driving recently emerged as a promising research direction to target autonomy from a full-stack perspective. Along this line, many of the latest works follow an open-loop evaluation setting on nuScenes to study the planning behavior. In this paper, we delve deeper into the problem by conducting thorough analyses and demystifying more devils in the details. We initially observed that the nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models incorporating ego status, such as the ego vehicle's velocity. These models tend to rely predominantly on the ego vehicle's status for future path planning. Beyond the limitations of the dataset, we also note that current metrics do not comprehensively assess the planning quality, leading to potentially biased conclusions drawn from existing benchmarks. To address this issue, we introduce a new metric to evaluate whether the predicted trajectories adhere to the road. We further propose a simple baseline able to achieve competitive results without relying on perception annotations. Given the current limitations on the benchmark and metrics, we suggest the community reassess relevant prevailing research and be cautious whether the continued pursuit of state-of-the-art would yield convincing and universal conclusions. Code and models are available at \url{//github.com/NVlabs/BEV-Planner}

Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.

Recent research on the grokking phenomenon has illuminated the intricacies of neural networks' training dynamics and their generalization behaviors. Grokking refers to a sharp rise of the network's generalization accuracy on the test set, which occurs long after an extended overfitting phase, during which the network perfectly fits the training set. While the existing research primarily focus on shallow networks such as 2-layer MLP and 1-layer Transformer, we explore grokking on deep networks (e.g. 12-layer MLP). We empirically replicate the phenomenon and find that deep neural networks can be more susceptible to grokking than its shallower counterparts. Meanwhile, we observe an intriguing multi-stage generalization phenomenon when increase the depth of the MLP model where the test accuracy exhibits a secondary surge, which is scarcely seen on shallow models. We further uncover compelling correspondences between the decreasing of feature ranks and the phase transition from overfitting to the generalization stage during grokking. Additionally, we find that the multi-stage generalization phenomenon often aligns with a double-descent pattern in feature ranks. These observations suggest that internal feature rank could serve as a more promising indicator of the model's generalization behavior compared to the weight-norm. We believe our work is the first one to dive into grokking in deep neural networks, and investigate the relationship of feature rank and generalization performance.

Software vulnerabilities can cause numerous problems, including crashes, data loss, and security breaches. These issues greatly compromise quality and can negatively impact the market adoption of software applications and systems. Traditional bug-fixing methods, such as static analysis, often produce false positives. While bounded model checking, a form of Formal Verification (FV), can provide more accurate outcomes compared to static analyzers, it demands substantial resources and significantly hinders developer productivity. Can Machine Learning (ML) achieve accuracy comparable to FV methods and be used in popular instant code completion frameworks in near real-time? In this paper, we introduce SecureFalcon, an innovative model architecture with only 121 million parameters derived from the Falcon-40B model and explicitly tailored for classifying software vulnerabilities. To achieve the best performance, we trained our model using two datasets, namely the FormAI dataset and the FalconVulnDB. The FalconVulnDB is a combination of recent public datasets, namely the SySeVR framework, Draper VDISC, Bigvul, Diversevul, SARD Juliet, and ReVeal datasets. These datasets contain the top 25 most dangerous software weaknesses, such as CWE-119, CWE-120, CWE-476, CWE-122, CWE-190, CWE-121, CWE-78, CWE-787, CWE-20, and CWE-762. SecureFalcon achieves 94% accuracy in binary classification and up to 92% in multiclassification, with instant CPU inference times. It outperforms existing models such as BERT, RoBERTa, CodeBERT, and traditional ML algorithms, promising to push the boundaries of software vulnerability detection and instant code completion frameworks.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

北京阿比特科技有限公司