This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed Lipschitz bounds, i.e. limited sensitivity to perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP), which does not scale to large models. In contrast to the SDP approach, we provide a ``direct'' parameterization, i.e. a smooth mapping from $\mathbb R^N$ onto the set of weights of Lipschitz-bounded networks. This enables training via standard gradient methods, without any computationally intensive projections or barrier terms. The new parameterization can equivalently be thought of as either a new layer type (the \textit{sandwich layer}), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. We illustrate the method with some applications in image classification (MNIST and CIFAR-10).
We state concentration inequalities for the output of the hidden layers of a stochastic deep neural network (SDNN), as well as for the output of the whole SDNN. These results allow us to introduce an expected classifier (EC), and to give probabilistic upper bound for the classification error of the EC. We also state the optimal number of layers for the SDNN via an optimal stopping procedure. We apply our analysis to a stochastic version of a feedforward neural network with ReLU activation function.
We propose an alternating direction method of multipliers (ADMM) to solve an optimization problem stemming from inverse lithography. The objective functional of the optimization problem includes three terms: the misfit between the imaging on wafer and the target pattern, the penalty term which ensures the mask is binary and the total variation regularization term. By variable splitting, we introduce an augmented Lagrangian for the original objective functional. In the framework of ADMM method, the optimization problem is divided into several subproblems. Each of the subproblems can be solved efficiently. We give the convergence analysis of the proposed method. Specially, instead of solving the subproblem concerning sigmoid, we solve directly the threshold truncation imaging function which can be solved analytically. We also provide many numerical examples to illustrate the effectiveness of the method.
A finite element discretization is developed for the Cai-Hu model, describing the formation of biological networks. The model consists of a non linear elliptic equation for the pressure $p$ and a non linear reaction-diffusion equation for the conductivity tensor $\mathbb{C}$. The problem requires high resolution due to the presence of multiple scales, the stiffness in all its components and the non linearities. We propose a low order finite element discretization in space coupled with a semi-implicit time advancing scheme. The code is validated with several numerical tests performed with various choices for the parameters involved in the system. In absence of the exact solution, we apply Richardson extrapolation technique to estimate the order of the method.
We study the problem of verification and synthesis of robust control barrier functions (CBF) for control-affine polynomial systems with bounded additive uncertainty and convex polynomial constraints on the control. We first formulate robust CBF verification and synthesis as multilevel polynomial optimization problems (POP), where verification optimizes -- in three levels -- the uncertainty, control, and state, while synthesis additionally optimizes the parameter of a chosen parametric CBF candidate. We then show that, by invoking the KKT conditions of the inner optimizations over uncertainty and control, the verification problem can be simplified as a single-level POP and the synthesis problem reduces to a min-max POP. This reduction leads to multilevel semidefinite relaxations. For the verification problem, we apply Lasserre's hierarchy of moment relaxations. For the synthesis problem, we draw connections to existing relaxation techniques for robust min-max POP, which first use sum-of-squares programming to find increasingly tight polynomial lower bounds to the unknown value function of the verification POP, and then call Lasserre's hierarchy again to maximize the lower bounds. Both semidefinite relaxations guarantee asymptotic global convergence to optimality. We provide an in-depth study of our framework on the controlled Van der Pol Oscillator, both with and without additive uncertainty.
Learning precise surrogate models of complex computer simulations and physical machines often require long-lasting or expensive experiments. Furthermore, the modeled physical dependencies exhibit nonlinear and nonstationary behavior. Machine learning methods that are used to produce the surrogate model should therefore address these problems by providing a scheme to keep the number of queries small, e.g. by using active learning and be able to capture the nonlinear and nonstationary properties of the system. One way of modeling the nonstationarity is to induce input-partitioning, a principle that has proven to be advantageous in active learning for Gaussian processes. However, these methods either assume a known partitioning, need to introduce complex sampling schemes or rely on very simple geometries. In this work, we present a simple, yet powerful kernel family that incorporates a partitioning that: i) is learnable via gradient-based methods, ii) uses a geometry that is more flexible than previous ones, while still being applicable in the low data regime. Thus, it provides a good prior for active learning procedures. We empirically demonstrate excellent performance on various active learning tasks.
Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering $n$ noisy training samples, along with their noise-free counterparts, on a $d$-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of $\displaystyle n^{-\frac{2}{d+2}}\log^4 n$, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.
We study the problem of out-of-distribution (o.o.d.) generalization where spurious correlations of attributes vary across training and test domains. This is known as the problem of correlation shift and has posed concerns on the reliability of machine learning. In this work, we introduce the concepts of direct and indirect effects from causal inference to the domain generalization problem. We argue that models that learn direct effects minimize the worst-case risk across correlation-shifted domains. To eliminate the indirect effects, our algorithm consists of two stages: in the first stage, we learn an indirect-effect representation by minimizing the prediction error of domain labels using the representation and the class labels; in the second stage, we remove the indirect effects learned in the first stage by matching each data with another data of similar indirect-effect representation but of different class labels in the training and validation phase. Our approach is shown to be compatible with existing methods and improve the generalization performance of them on correlation-shifted datasets. Experiments on 5 correlation-shifted datasets and the DomainBed benchmark verify the effectiveness of our approach.
Deep neural networks are becoming increasingly popular in approximating arbitrary functions from noisy data. But wider adoption is being hindered by the need to explain such models and to impose additional constraints on them. Monotonicity constraint is one of the most requested properties in real-world scenarios and is the focus of this paper. One of the oldest ways to construct a monotonic fully connected neural network is to constrain its weights to be non-negative while employing a monotonic activation function. Unfortunately, this construction does not work with popular non-saturated activation functions such as ReLU, ELU, SELU etc, as it can only approximate convex functions. We show this shortcoming can be fixed by employing the original activation function for a part of the neurons in the layer, and employing its point reflection for the other part. Our experiments show this approach of building monotonic deep neural networks have matching or better accuracy when compared to other state-of-the-art methods such as deep lattice networks or monotonic networks obtained by heuristic regularization. This method is the simplest one in the sense of having the least number of parameters, not requiring any modifications to the learning procedure or steps post-learning steps.
We study the problem of training a two-layer neural network (NN) of arbitrary width using stochastic gradient descent (SGD) where the input $\boldsymbol{x}\in \mathbb{R}^d$ is Gaussian and the target $y \in \mathbb{R}$ follows a multiple-index model, i.e., $y=g(\langle\boldsymbol{u_1},\boldsymbol{x}\rangle,...,\langle\boldsymbol{u_k},\boldsymbol{x}\rangle)$ with a noisy link function $g$. We prove that the first-layer weights of the NN converge to the $k$-dimensional principal subspace spanned by the vectors $\boldsymbol{u_1},...,\boldsymbol{u_k}$ of the true model, when online SGD with weight decay is used for training. This phenomenon has several important consequences when $k \ll d$. First, by employing uniform convergence on this smaller subspace, we establish a generalization error bound of $O(\sqrt{{kd}/{T}})$ after $T$ iterations of SGD, which is independent of the width of the NN. We further demonstrate that, SGD-trained ReLU NNs can learn a single-index target of the form $y=f(\langle\boldsymbol{u},\boldsymbol{x}\rangle) + \epsilon$ by recovering the principal direction, with a sample complexity linear in $d$ (up to log factors), where $f$ is a monotonic function with at most polynomial growth, and $\epsilon$ is the noise. This is in contrast to the known $d^{\Omega(p)}$ sample requirement to learn any degree $p$ polynomial in the kernel regime, and it shows that NNs trained with SGD can outperform the neural tangent kernel at initialization. Finally, we also provide compressibility guarantees for NNs using the approximate low-rank structure produced by SGD.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.