亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we extend the Discrete Empirical Interpolation Method (DEIM) to the third-order tensor case based on the t-product and use it to select important/ significant lateral and horizontal slices/features. The proposed Tubal DEIM (TDEIM) is investigated both theoretically and numerically. The experimental results show that the TDEIM can provide more accurate approximations than the existing methods. An application of the proposed method to the supervised classification task is also presented.

相關內容

Graded labels are ubiquitous in real-world learning-to-rank applications, especially in human rated relevance data. Traditional learning-to-rank techniques aim to optimize the ranked order of documents. They typically, however, ignore predicting actual grades. This prevents them from being adopted in applications where grades matter, such as filtering out ``poor'' documents. Achieving both good ranking performance and good grade prediction performance is still an under-explored problem. Existing research either focuses only on ranking performance by not calibrating model outputs, or treats grades as numerical values, assuming labels are on a linear scale and failing to leverage the ordinal grade information. In this paper, we conduct a rigorous study of learning to rank with grades, where both ranking performance and grade prediction performance are important. We provide a formal discussion on how to perform ranking with non-scalar predictions for grades, and propose a multiobjective formulation to jointly optimize both ranking and grade predictions. In experiments, we verify on several public datasets that our methods are able to push the Pareto frontier of the tradeoff between ranking and grade prediction performance, showing the benefit of leveraging ordinal grade information.

Deep metric learning (DML) based methods have been found very effective for content-based image retrieval (CBIR) in remote sensing (RS). For accurately learning the model parameters of deep neural networks, most of the DML methods require a high number of annotated training images, which can be costly to gather. To address this problem, in this paper we present an annotation cost efficient active learning (AL) method (denoted as ANNEAL). The proposed method aims to iteratively enrich the training set by annotating the most informative image pairs as similar or dissimilar, %answering a simple yes/no question, while accurately modelling a deep metric space. This is achieved by two consecutive steps. In the first step the pairwise image similarity is modelled based on the available training set. Then, in the second step the most uncertain and diverse (i.e., informative) image pairs are selected to be annotated. Unlike the existing AL methods for CBIR, at each AL iteration of ANNEAL a human expert is asked to annotate the most informative image pairs as similar/dissimilar. This significantly reduces the annotation cost compared to annotating images with land-use/land cover class labels. Experimental results show the effectiveness of our method. The code of ANNEAL is publicly available at //git.tu-berlin.de/rsim/ANNEAL.

If the assumed model does not accurately capture the underlying structure of the data, a statistical method is likely to yield sub-optimal results, and so model selection is crucial in order to conduct any statistical analysis. However, in case of massive datasets, the selection of an appropriate model from a large pool of candidates becomes computationally challenging, and limited research has been conducted on data selection for model selection. In this study, we conduct subdata selection based on the A-optimality criterion, allowing to perform model selection on a smaller subset of the data. We evaluate our approach based on the probability of selecting the best model and on the estimation efficiency through simulation experiments and two real data applications.

In this paper, we present a novel characterization of the smoothness of a model based on basic principles of Large Deviation Theory. In contrast to prior work, where the smoothness of a model is normally characterized by a real value (e.g., the weights' norm), we show that smoothness can be described by a simple real-valued function. Based on this concept of smoothness, we propose an unifying theoretical explanation of why some interpolators generalize remarkably well and why a wide range of modern learning techniques (i.e., stochastic gradient descent, $\ell_2$-norm regularization, data augmentation, invariant architectures, and overparameterization) are able to find them. The emergent conclusion is that all these methods provide complimentary procedures that bias the optimizer to smoother interpolators, which, according to this theoretical analysis, are the ones with better generalization error.

An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix $A$ and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of $A$, and when parameterized by the dual tree-depth and the entry complexity of $A$; both these parameterization imply that $A$ is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the $\ell_1$-norm of the Graver basis is bounded by a function of the maximum $\ell_1$-norm of a circuit of $A$. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix $A$ that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the $\ell_1$-norm of the Graver basis of the constraint matrix, when parameterized by the $\ell_1$-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.

We introduce variational sequential Optimal Experimental Design (vsOED), a new method for optimally designing a finite sequence of experiments under a Bayesian framework and with information-gain utilities. Specifically, we adopt a lower bound estimator for the expected utility through variational approximation to the Bayesian posteriors. The optimal design policy is solved numerically by simultaneously maximizing the variational lower bound and performing policy gradient updates. We demonstrate this general methodology for a range of OED problems targeting parameter inference, model discrimination, and goal-oriented prediction. These cases encompass explicit and implicit likelihoods, nuisance parameters, and physics-based partial differential equation models. Our vsOED results indicate substantially improved sample efficiency and reduced number of forward model simulations compared to previous sequential design algorithms.

This paper explores variants of the subspace iteration algorithm for computing approximate invariant subspaces. The standard subspace iteration approach is revisited and new variants that exploit gradient-type techniques combined with a Grassmann manifold viewpoint are developed. A gradient method as well as a conjugate gradient technique are described. Convergence of the gradient-based algorithm is analyzed and a few numerical experiments are reported, indicating that the proposed algorithms are sometimes superior to a standard Chebyshev-based subspace iteration when compared in terms of number of matrix vector products, but do not require estimating optimal parameters. An important contribution of this paper to achieve this good performance is the accurate and efficient implementation of an exact line search. In addition, new convergence proofs are presented for the non-accelerated gradient method that includes a locally exponential convergence if started in a $\mathcal{O(\sqrt{\delta})}$ neighbourhood of the dominant subspace with spectral gap $\delta$.

Reliability sensitivity analysis is concerned with measuring the influence of a system's uncertain input parameters on its probability of failure. Statistically dependent inputs present a challenge in both computing and interpreting these sensitivity indices; such dependencies require discerning between variable interactions produced by the probabilistic model describing the system inputs and the computational model describing the system itself. To accomplish such a separation of effects in the context of reliability sensitivity analysis we extend on an idea originally proposed by Mara and Tarantola (2012) for model outputs unrelated to rare events. We compute the independent (influence via computational model) and full (influence via both computational and probabilistic model) contributions of all inputs to the variance of the indicator function of the rare event. We compute this full set of variance-based sensitivity indices of the rare event indicator using a single set of failure samples. This is possible by considering $d$ different hierarchically structured isoprobabilistic transformations of this set of failure samples from the original $d$-dimensional space of dependent inputs to standard-normal space. The approach facilitates computing the full set of variance-based reliability sensitivity indices with a single set of failure samples obtained as the byproduct of a single run of a sample-based rare event estimation method. That is, no additional evaluations of the computational model are required. We demonstrate the approach on a test function and two engineering problems.

Learning the kernel parameters for Gaussian processes is often the computational bottleneck in applications such as online learning, Bayesian optimization, or active learning. Amortizing parameter inference over different datasets is a promising approach to dramatically speed up training time. However, existing methods restrict the amortized inference procedure to a fixed kernel structure. The amortization network must be redesigned manually and trained again in case a different kernel is employed, which leads to a large overhead in design time and training time. We propose amortizing kernel parameter inference over a complete kernel-structure-family rather than a fixed kernel structure. We do that via defining an amortization network over pairs of datasets and kernel structures. This enables fast kernel inference for each element in the kernel family without retraining the amortization network. As a by-product, our amortization network is able to do fast ensembling over kernel structures. In our experiments, we show drastically reduced inference time combined with competitive test performance for a large set of kernels and datasets.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

北京阿比特科技有限公司