亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intelligent reflecting surface (IRS) has emerged as a promising technique to extend the wireless signal coverage of access point (AP) and improve the communication performance cost-effectively. In order to reduce the path-loss of the cascaded user-IRS-AP channels, the IRS-integrated AP architecture has been proposed to deploy the IRSs and the antenna array of the AP within the same antenna radome. To reduce the pilot overhead for estimating all IRS-involved channels, in this paper, we propose a novel codebook-based IRS reflection design for the IRS-integrated AP to enhance the coverage performance in a given area. In particular, the codebook consisting of a small number of codewords is designed offline by employing an efficient sector division strategy based on the azimuth angle. To ensure the performance of each sector, we optimize its corresponding codeword for IRS reflection pattern to maximize the sector-min-average-effective-channel-power (SMAECP) by applying the alternating optimization (AO) and semidefinite relaxation (SDR) methods. With the designed codebook, the AP performs the IRS reflection training by sequentially applying all codewords and selects the one achieving the best communication performance for data transmission. Numerical results show that our proposed codebook design can enhance the average channel power of the whole coverage area, as compared to the system without IRS. Moreover, our proposed codebook-based IRS reflection design is shown to achieve significant performance gain over other benchmark schemes in both single-user and multi-user transmissions.

相關內容

With the widespread application of causal inference, it is increasingly important to have tools which can test for the presence of causal effects in a diverse array of circumstances. In this vein we focus on the problem of testing for \emph{distributional} causal effects, where the treatment affects not just the mean, but also higher order moments of the distribution, as well as multidimensional or structured outcomes. We build upon a previously introduced framework, Counterfactual Mean Embeddings, for representing causal distributions within Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for the distributional embeddings. These improved estimators are inspired by doubly robust estimators of the causal mean, using a similar form within the kernel space. We analyse these estimators, proving they retain the doubly robust property and have improved convergence rates compared to the original estimators. This leads to new permutation based tests for distributional causal effects, using the estimators we propose as tests statistics. We experimentally and theoretically demonstrate the validity of our tests.

We consider the problem of testing whether a single coefficient is equal to zero in fixed-design linear models under a moderately high-dimensional regime, where the dimension of covariates $p$ is allowed to be in the same order of magnitude as sample size $n$. In this regime, to achieve finite-population validity, existing methods usually require strong distributional assumptions on the noise vector (such as Gaussian or rotationally invariant), which limits their applications in practice. In this paper, we propose a new method, called residual permutation test (RPT), which is constructed by projecting the regression residuals onto the space orthogonal to the union of the column spaces of the original and permuted design matrices. RPT can be proved to achieve finite-population size validity under fixed design with just exchangeable noises, whenever $p < n / 2$. Moreover, RPT is shown to be asymptotically powerful for heavy tailed noises with bounded $(1+t)$-th order moment when the true coefficient is at least of order $n^{-t/(1+t)}$ for $t \in [0,1]$. We further proved that this signal size requirement is essentially rate-optimal in the minimax sense. Numerical studies confirm that RPT performs well in a wide range of simulation settings with normal and heavy-tailed noise distributions.

The ability to invent new tools has been identified as an important facet of our ability as a species to problem solve in dynamic and novel environments. While the use of tools by artificial agents presents a challenging task and has been widely identified as a key goal in the field of autonomous robotics, far less research has tackled the invention of new tools by agents. In this paper, (1) we articulate the distinction between tool discovery and tool innovation by providing a minimal description of the two concepts under the formalism of active inference. We then (2) apply this description to construct a toy model of tool innovation by introducing the notion of tool affordances into the hidden states of the agent's probabilistic generative model. This particular state factorisation facilitates the ability to not just discover tools but invent them through the offline induction of an appropriate tool property. We discuss the implications of these preliminary results and outline future directions of research.

As the complexity of System-on-Chip (SoC) designs continues to increase, ensuring thorough verification becomes a significant challenge for system integrators. The complexity of verification can result in undetected bugs. Unlike software or firmware bugs, hardware bugs are hard to fix after deployment and they require additional logic, i.e., patching logic integrated with the design in advance in order to patch. However, the absence of a standardized metric for defining "patchability" leaves system integrators relying on their understanding of each IP and security requirements to engineer ad hoc patching designs. In this paper, we propose a theoretical patchability quantification method to analyze designs at the Register Transfer Level (RTL) with provided patching options. Our quantification defines patchability as a combination of observability and controllability so that we can analyze and compare the patchability of IP variations. This quantification is a systematic approach to estimate each patching architecture's ability to patch at run-time and complements existing patching works. In experiments, we compare several design options of the same patching architecture and discuss their differences in terms of theoretical patchability and how many potential weaknesses can be mitigated.

This paper considers optimal traffic signal control in smart cities, which has been taken as a complex networked system control problem. Given the interacting dynamics among traffic lights and road networks, attaining controller adaptivity and scalability stands out as a primary challenge. Capturing the spatial-temporal correlation among traffic lights under the framework of Multi-Agent Reinforcement Learning (MARL) is a promising solution. Nevertheless, existing MARL algorithms ignore effective information aggregation which is fundamental for improving the learning capacity of decentralized agents. In this paper, we design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation. Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network. Particularly, we transfer the road network topology into a graph shift operator by forming a diffusion process on the topology, which subsequently facilitates the construction of graph signals. A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning. Extensive experiments based on both synthetic and real-world datasets verify that our proposal outperforms existing decentralized algorithms.

Reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. In this work, we consider joint BS and RIS beamforming for maximizing the downlink (DL) transmission rate while guaranteeing uplink (UL) rate requirement. We propose an FD-RIS beamforming (FRIS) scheme by adopting penalty convex-concave programming. Simulation results demonstrate the UL/DL rate improvements achieved by considering various levels of imperfect CSI. The proposed FRIS scheme validates their effectiveness across different RIS deployments and RIS/BS configurations. FRIS has achieved the highest rate compared to the other approximation method, conventional beamforming techniques, HD systems, and deployment without RIS.

Graph convolutional neural network (GCNN) operates on graph domain and it has achieved a superior performance to accomplish a wide range of tasks. In this paper, we introduce a Barron space of functions on a compact domain of graph signals. We prove that the proposed Barron space is a reproducing kernel Banach space, it can be decomposed into the union of a family of reproducing kernel Hilbert spaces with neuron kernels, and it could be dense in the space of continuous functions on the domain. Approximation property is one of the main principles to design neural networks. In this paper, we show that outputs of GCNNs are contained in the Barron space and functions in the Barron space can be well approximated by outputs of some GCNNs in the integrated square and uniform measurements. We also estimate the Rademacher complexity of functions with bounded Barron norm and conclude that functions in the Barron space could be learnt from their random samples efficiently.

Intelligent reflecting surface (IRS) has been recognized as a powerful technology for boosting communication performance. To reduce manufacturing and control costs, it is preferable to consider discrete phase shifts (DPSs) for IRS, which are set by default as uniformly distributed in the range of $[ - \pi,\pi )$ in the literature. Such setting, however, cannot achieve a desirable performance over the general Rician fading where the channel phase concentrates in a narrow range with a higher probability. Motivated by this drawback, we in this paper design optimal non-uniform DPSs for IRS to achieve a desirable performance level. The fundamental challenge is the \textit{possible offset in phase distribution across different cascaded source-element-destination channels}, if adopting conventional IRS where the position of each element is fixed. Such phenomenon leads to different patterns of optimal non-uniform DPSs for each IRS element and thus causes huge manufacturing costs especially when the number of IRS elements is large. Driven by the recently emerging fluid antenna system (or movable antenna technology), we demonstrate that if the position of each IRS element can be flexibly adjusted, the above phase distribution offset can be surprisingly eliminated, leading to the same pattern of DPSs for each IRS element. Armed with this, we then determine the form of unified non-uniform DPSs based on a low-complexity iterative algorithm. Simulations show that our proposed design significantly improves the system performance compared to competitive benchmarks.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司