亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish various complexity results for the entailment problem between formulas in Separation Logic with user-defined predicates denoting recursive data structures. The considered fragments are characterized by syntactic conditions on the inductive rules that define the semantics of the predicates. We focus on so-called P-rules, which are similar to (but simpler than) the PCE rules introduced by Iosif et al. in 2013. In particular, for a specific fragment where predicates are defined by so-called loc-deterministic inductive rules, we devise a sound and complete cyclic proof procedure running in polynomial time. Several complexity lower bounds are provided, showing that any relaxing of the provided conditions makes the problem intractable.

相關內容

Researchers commonly use difference-in-differences (DiD) designs to evaluate public policy interventions. While established methodologies exist for estimating effects in the context of binary interventions, policies often result in varied exposures across regions implementing the policy. Yet, existing approaches for incorporating continuous exposures face substantial limitations in addressing confounding variables associated with intervention status, exposure levels, and outcome trends. These limitations significantly constrain policymakers' ability to fully comprehend policy impacts and design future interventions. In this study, we propose innovative estimators for causal effect curves within the DiD framework, accounting for multiple sources of confounding. Our approach accommodates misspecification of a subset of treatment, exposure, and outcome models while avoiding any parametric assumptions on the effect curve. We present the statistical properties of the proposed methods and illustrate their application through simulations and a study investigating the diverse effects of a nutritional excise tax.

The majority of the research on the quantization of Deep Neural Networks (DNNs) is focused on reducing the precision of tensors visible by high-level frameworks (e.g., weights, activations, and gradients). However, current hardware still relies on high-accuracy core operations. Most significant is the operation of accumulating products. This high-precision accumulation operation is gradually becoming the main computational bottleneck. This is because, so far, the usage of low-precision accumulators led to a significant degradation in performance. In this work, we present a simple method to train and fine-tune high-end DNNs, to allow, for the first time, utilization of cheaper, $12$-bits accumulators, with no significant degradation in accuracy. Lastly, we show that as we decrease the accumulation precision further, using fine-grained gradient approximations can improve the DNN accuracy.

Conventional recommendation methods have achieved notable advancements by harnessing collaborative or sequential information from user behavior. Recently, large language models (LLMs) have gained prominence for their capabilities in understanding and reasoning over textual semantics, and have found utility in various domains, including recommendation. Conventional recommendation methods and LLMs each have their strengths and weaknesses. While conventional methods excel at mining collaborative information and modeling sequential behavior, they struggle with data sparsity and the long-tail problem. LLMs, on the other hand, are proficient at utilizing rich textual contexts but face challenges in mining collaborative or sequential information. Despite their individual successes, there is a significant gap in leveraging their combined potential to enhance recommendation performance. In this paper, we introduce a general and model-agnostic framework known as \textbf{L}arge \textbf{la}nguage model with \textbf{m}utual augmentation and \textbf{a}daptive aggregation for \textbf{Rec}ommendation (\textbf{Llama4Rec}). Llama4Rec synergistically combines conventional and LLM-based recommendation models. Llama4Rec proposes data augmentation and prompt augmentation strategies tailored to enhance the conventional model and LLM respectively. An adaptive aggregation module is adopted to combine the predictions of both kinds of models to refine the final recommendation results. Empirical studies on three real-world datasets validate the superiority of Llama4Rec, demonstrating its consistent outperformance of baseline methods and significant improvements in recommendation performance.

The ever-increasing demand for data services and the proliferation of user equipment (UE) have resulted in a significant rise in the volume of mobile traffic. Moreover, in multi-band networks, non-uniform traffic distribution among different operational bands can lead to congestion, which can adversely impact the user's quality of experience. Load balancing is a critical aspect of network optimization, where it ensures that the traffic is evenly distributed among different bands, avoiding congestion and ensuring better user experience. Traditional load balancing approaches rely only on the band channel quality as a load indicator and to move UEs between bands, which disregards the UE's demands and the band resource, and hence, leading to a suboptimal balancing and utilization of resources. To address this challenge, we propose an event-based algorithm, in which we model the load balancing problem as a multi-objective stochastic optimization, and assign UEs to bands in a probabilistic manner. The goal is to evenly distribute traffic across available bands according to their resources, while maintaining minimal number of inter-frequency handovers to avoid the signaling overhead and the interruption time. Simulation results show that the proposed algorithm enhances the network's performance and outperforms traditional load balancing approaches in terms of throughput and interruption time.

Previous contrastive deep clustering methods mostly focus on instance-level information while overlooking the member relationship within groups/clusters, which may significantly undermine their representation learning and clustering capability. Recently, some group-contrastive methods have been developed, which, however, typically rely on the samples of the entire dataset to obtain pseudo labels and lack the ability to efficiently update the group assignments in a batch-wise manner. To tackle these critical issues, we present a novel end-to-end deep clustering framework with dynamic grouping and prototype aggregation, termed as DigPro. Specifically, the proposed dynamic grouping extends contrastive learning from instance-level to group-level, which is effective and efficient for timely updating groups. Meanwhile, we perform contrastive learning on prototypes in a spherical feature space, termed as prototype aggregation, which aims to maximize the inter-cluster distance. Notably, with an expectation-maximization framework, DigPro simultaneously takes advantage of compact intra-cluster connections, well-separated clusters, and efficient group updating during the self-supervised training. Extensive experiments on six image benchmarks demonstrate the superior performance of our approach over the state-of-the-art. Code is available at //github.com/Regan-Zhang/DigPro.

While diffusion models demonstrate a remarkable capability for generating high-quality images, their tendency to `replicate' training data raises privacy concerns. Although recent research suggests that this replication may stem from the insufficient generalization of training data captions and duplication of training images, effective mitigation strategies remain elusive. To address this gap, our paper first introduces a generality score that measures the caption generality and employ large language model (LLM) to generalize training captions. Subsequently, we leverage generalized captions and propose a novel dual fusion enhancement approach to mitigate the replication of diffusion models. Our empirical results demonstrate that our proposed methods can significantly reduce replication by 43.5% compared to the original diffusion model while maintaining the diversity and quality of generations. Code is available at //github.com/HowardLi0816/dual-fusion-diffusion.

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. By leveraging an existing completely positive reformulation of MBQPs, as well as a new strong-duality result, we show the exactness of the dual problem over the cone of copositive matrices, thus allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司