Previous contrastive deep clustering methods mostly focus on instance-level information while overlooking the member relationship within groups/clusters, which may significantly undermine their representation learning and clustering capability. Recently, some group-contrastive methods have been developed, which, however, typically rely on the samples of the entire dataset to obtain pseudo labels and lack the ability to efficiently update the group assignments in a batch-wise manner. To tackle these critical issues, we present a novel end-to-end deep clustering framework with dynamic grouping and prototype aggregation, termed as DigPro. Specifically, the proposed dynamic grouping extends contrastive learning from instance-level to group-level, which is effective and efficient for timely updating groups. Meanwhile, we perform contrastive learning on prototypes in a spherical feature space, termed as prototype aggregation, which aims to maximize the inter-cluster distance. Notably, with an expectation-maximization framework, DigPro simultaneously takes advantage of compact intra-cluster connections, well-separated clusters, and efficient group updating during the self-supervised training. Extensive experiments on six image benchmarks demonstrate the superior performance of our approach over the state-of-the-art. Code is available at //github.com/Regan-Zhang/DigPro.
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut bias, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) for shortcut bias mitigation. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.
Sequential tests and their implied confidence sequences, which are valid at arbitrary stopping times, promise flexible statistical inference and on-the-fly decision making. However, strong guarantees are limited to parametric sequential tests that under-cover in practice or concentration-bound-based sequences that over-cover and have suboptimal rejection times. In this work, we consider \cite{robbins1970boundary}'s delayed-start normal-mixture sequential probability ratio tests, and we provide the first asymptotic type-I-error and expected-rejection-time guarantees under general non-parametric data generating processes, where the asymptotics are indexed by the test's burn-in time. The type-I-error results primarily leverage a martingale strong invariance principle and establish that these tests (and their implied confidence sequences) have type-I error rates approaching a desired $\alpha$-level. The expected-rejection-time results primarily leverage an identity inspired by It\^o's lemma and imply that, in certain asymptotic regimes, the expected rejection time approaches the minimum possible among $\alpha$-level tests. We show how to apply our results to sequential inference on parameters defined by estimating equations, such as average treatment effects. Together, our results establish these (ostensibly parametric) tests as general-purpose, non-parametric, and near-optimal. We illustrate this via numerical experiments.
Pointer arithmetic is widely used in low-level programs, e.g. memory allocators. The specification of such programs usually requires using pointer arithmetic inside inductive definitions to define the common data structures, e.g. heap lists in memory allocators. In this work, we investigate decision problems for SLAH, a separation logic fragment that allows pointer arithmetic inside inductive definitions, thus enabling specification of properties for programs manipulating heap lists. Pointer arithmetic inside inductive definitions is challenging for automated reasoning. We tackle this challenge and achieve decision procedures for both satisfiability and entailment of SLAH formulas. The crux of our decision procedure for satisfiability is to compute summaries of inductive definitions. We show that although the summary is naturally expressed as an existentially quantified non-linear arithmetic formula, it can actually be transformed into an equivalent linear arithmetic formula. The decision procedure for entailment, on the other hand, has to match and split the spatial atoms according to the arithmetic relation between address variables. We report on the implementation of these decision procedures and their good performance in solving problems issued from the verification of building block programs used in memory allocators.
Finetuning approaches in NLP often focus on exploitation rather than exploration, which may lead to suboptimal models. Given the vast search space of natural language, this limited exploration can restrict their performance in complex, high-stakes domains, where accurate negation understanding and logical reasoning abilities are crucial. To address this issue, we leverage Reinforcement Learning from Logical Feedback (RLLF) to create an effective balance between exploration and exploitation in LLMs. Our approach employs an appropriate benchmark dataset for training and evaluation, highlighting the importance of exploration in enhancing negation understanding capabilities. We compare the performance of our RLLF-enhanced LLMs with baseline models trained without RLLF, demonstrating the value of this balanced approach. Furthermore, we showcase the potential of our method in legal AI applications by employing transfer learning and evaluating its impact on negation understanding. Our experimental results exhibit the effectiveness of balancing exploration and exploitation with RLLF in improving LLMs' negation capabilities. This has implications for the development of more accurate, reliable, and logically consistent language models in high-stakes domains.
In the public projects problem, a group of decisionmakers aggregate their preferences to choose one alternative. Recent work on public projects has proposed the Quadratic Transfers Mechanism (QTM) and shown asymptotic welfare guarantees in some cases. We begin by giving new non-asymptotic Price of Anarchy guarantees for the QTM. We then incorporate an alternative philosophy toward group decisionmaking, aggregation of information about which is the best alternative. We propose a public projects mechanism based on the QTM that aggregates both preferences and predictions, modeled as forecasts of the projects' welfare impacts. When the predictions come from a prediction market or wagering mechanism, we show the entire mechanism is robust to manipulation and give Price of Anarchy guarantees, though under strong assumptions on the mechanism's knowledge. Our results focus primarily on the case of deciding between two alternatives, showing the Price of Anarchy tends to $1$ as natural measures of the "size" of the population grow large. In most cases, the mechanisms achieve a balanced budget as well.
Many machine learning and data mining algorithms rely on the assumption that the training and testing data share the same feature space and distribution. However, this assumption may not always hold. For instance, there are situations where we need to classify data in one domain, but we only have sufficient training data available from a different domain. The latter data may follow a distinct distribution. In such cases, successfully transferring knowledge across domains can significantly improve learning performance and reduce the need for extensive data labeling efforts. Transfer learning (TL) has thus emerged as a promising framework to tackle this challenge, particularly in security-related tasks. This paper aims to review the current advancements in utilizing TL techniques for security. The paper includes a discussion of the existing research gaps in applying TL in the security domain, as well as exploring potential future research directions and issues that arise in the context of TL-assisted security solutions.
Despite the importance of trust in human-AI interactions, researchers must adopt questionnaires from other disciplines that lack validation in the AI context. Motivated by the need for reliable and valid measures, we investigated the psychometric quality of two trust questionnaires, the Trust between People and Automation scale (TPA) by Jian et al. (2000) and the Trust Scale for the AI Context (TAI) by Hoffman et al. (2023). In a pre-registered online experiment (N = 1485), participants observed interactions with trustworthy and untrustworthy AI (autonomous vehicle and chatbot). Results support the psychometric quality of the TAI while revealing opportunities to improve the TPA, which we outline in our recommendations for using the two questionnaires. Furthermore, our findings provide additional empirical evidence of trust and distrust as two distinct constructs that may coexist independently. Building on our findings, we highlight the opportunities and added value of measuring both trust and distrust in human-AI research and advocate for further work on both constructs.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.