Copy-move forgery on speech (CMF), coupled with post-processing techniques, presents a great challenge to the forensic detection and localization of tampered areas. Most of the existing CMF detection approaches necessitate pre-segmentation of speech to facilitate similarity calculations among these segments. However, these approaches usually suffer from the problems of uncontrollable computational complexity and sensitivity to the presence of a word that is read multiple times within a speech recording. To address these issues, we propose a local feature tensors-based CMF detection algorithm that can transform duplicate detection and localization problems into a special tensor-matching procedure, accompanied by complete theoretical analysis as support. Through extensive experimentation, we have demonstrated that our method exhibits computational efficiency and robustness against post-processing techniques. Notably, it can effectively and blindly detect tampered segments, even those as short as a fractional second. These advantages highlight the promising potential of our approach for practical applications.
In the domain of Federated Learning (FL) systems, recent cutting-edge methods heavily rely on ideal conditions convergence analysis. Specifically, these approaches assume that the training datasets on IoT devices possess similar attributes to the global data distribution. However, this approach fails to capture the full spectrum of data characteristics in real-time sensing FL systems. In order to overcome this limitation, we suggest a new approach system specifically designed for IoT networks with real-time sensing capabilities. Our approach takes into account the generalization gap due to the user's data sampling process. By effectively controlling this sampling process, we can mitigate the overfitting issue and improve overall accuracy. In particular, We first formulate an optimization problem that harnesses the sampling process to concurrently reduce overfitting while maximizing accuracy. In pursuit of this objective, our surrogate optimization problem is adept at handling energy efficiency while optimizing the accuracy with high generalization. To solve the optimization problem with high complexity, we introduce an online reinforcement learning algorithm, named Sample-driven Control for Federated Learning (SCFL) built on the Soft Actor-Critic (A2C) framework. This enables the agent to dynamically adapt and find the global optima even in changing environments. By leveraging the capabilities of SCFL, our system offers a promising solution for resource allocation in FL systems with real-time sensing capabilities.
Gaussian processes scale prohibitively with the size of the dataset. In response, many approximation methods have been developed, which inevitably introduce approximation error. This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior. Therefore in practice, GP models are often as much about the approximation method as they are about the data. Here, we develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended. The most common GP approximations map to an instance in this class, such as methods based on the Cholesky factorization, conjugate gradients, and inducing points. For any method in this class, we prove (i) convergence of its posterior mean in the associated RKHS, (ii) decomposability of its combined posterior covariance into mathematical and computational covariances, and (iii) that the combined variance is a tight worst-case bound for the squared error between the method's posterior mean and the latent function. Finally, we empirically demonstrate the consequences of ignoring computational uncertainty and show how implicitly modeling it improves generalization performance on benchmark datasets.
Terminology correctness is important in the downstream application of machine translation, and a prevalent way to ensure this is to inject terminology constraints into a translation system. In our submission to the WMT 2023 terminology translation task, we adopt a translate-then-refine approach which can be domain-independent and requires minimal manual efforts. We annotate random source words with pseudo-terminology translations obtained from word alignment to first train a terminology-aware model. Further, we explore two post-processing methods. First, we use an alignment process to discover whether a terminology constraint has been violated, and if so, we re-decode with the violating word negatively constrained. Alternatively, we leverage a large language model to refine a hypothesis by providing it with terminology constraints. Results show that our terminology-aware model learns to incorporate terminologies effectively, and the large language model refinement process can further improve terminology recall.
This work proposes a training-free approach for the detection of LLMs-generated codes, mitigating the risks associated with their indiscriminate usage. To the best of our knowledge, our research is the first to investigate zero-shot detection techniques applied to code generated by advanced black-box LLMs like ChatGPT. Firstly, we find that existing training-based or zero-shot text detectors are ineffective in detecting code, likely due to the unique statistical properties found in code structures. We then modify the previous zero-shot text detection method, DetectGPT (Mitchell et al., 2023) by utilizing a surrogate white-box model to estimate the probability of the rightmost tokens, allowing us to identify code snippets generated by language models. Through extensive experiments conducted on the python codes of the CodeContest and APPS dataset, our approach demonstrates its effectiveness by achieving state-of-the-art detection results on text-davinci-003, GPT-3.5, and GPT-4 models. Moreover, our method exhibits robustness against revision attacks and generalizes well to Java codes. We also find that the smaller code language model like PolyCoder-160M performs as a universal code detector, outperforming the billion-scale counterpart. The codes will be available at //github.com/ Xianjun-Yang/Code_detection.git
This manuscript presents an exhaustive review of blockchain-based mixing services, aiming to fill the existing gap between academic innovations and real-world implementations. Starting with an identification of the core functionalities and techniques employed by mixing services, the paper delves into detailed explanations of these operational mechanisms. It further outlines an evaluation framework tailored for a rigorous assessment, highlighting the key vulnerabilities and strengths of various solutions. In addition, the study identifies potential attack vectors that compromise these services. The paper explores the dual nature of mixing services, while they contribute to the preservation of privacy, a cornerstone of blockchain technologies, they can also facilitate illicit activities. By addressing key research questions, this study not only offers a comprehensive overview of the current state of mixing services but also sets the stage for future academic discourse in this evolving field.
With the rapid development of geometric deep learning techniques, many mesh-based convolutional operators have been proposed to bridge irregular mesh structures and popular backbone networks. In this paper, we show that while convolutions are helpful, a simple architecture based exclusively on multi-layer perceptrons (MLPs) is competent enough to deal with mesh classification and semantic segmentation. Our new network architecture, named Mesh-MLP, takes mesh vertices equipped with the heat kernel signature (HKS) and dihedral angles as the input, replaces the convolution module of a ResNet with Multi-layer Perceptron (MLP), and utilizes layer normalization (LN) to perform the normalization of the layers. The all-MLP architecture operates in an end-to-end fashion and does not include a pooling module. Extensive experimental results on the mesh classification/segmentation tasks validate the effectiveness of the all-MLP architecture.
In all state-of-the-art sketching and coreset techniques for clustering, as well as in the best known fixed-parameter tractable approximation algorithms, randomness plays a key role. For the classic $k$-median and $k$-means problems, there are no known deterministic dimensionality reduction procedure or coreset construction that avoid an exponential dependency on the input dimension $d$, the precision parameter $\varepsilon^{-1}$ or $k$. Furthermore, there is no coreset construction that succeeds with probability $1-1/n$ and whose size does not depend on the number of input points, $n$. This has led researchers in the area to ask what is the power of randomness for clustering sketches [Feldman, WIREs Data Mining Knowl. Discov'20]. Similarly, the best approximation ratio achievable deterministically without a complexity exponential in the dimension are $\Omega(1)$ for both $k$-median and $k$-means, even when allowing a complexity FPT in the number of clusters $k$. This stands in sharp contrast with the $(1+\varepsilon)$-approximation achievable in that case, when allowing randomization. In this paper, we provide deterministic sketches constructions for clustering, whose size bounds are close to the best-known randomized ones. We also construct a deterministic algorithm for computing $(1+\varepsilon)$-approximation to $k$-median and $k$-means in high dimensional Euclidean spaces in time $2^{k^2/\varepsilon^{O(1)}} poly(nd)$, close to the best randomized complexity. Furthermore, our new insights on sketches also yield a randomized coreset construction that uses uniform sampling, that immediately improves over the recent results of [Braverman et al. FOCS '22] by a factor $k$.
In recent years, work has gone into developing deep interpretable methods for image classification that clearly attributes a model's output to specific features of the data. One such of these methods is the Prototypical Part Network (ProtoPNet), which attempts to classify images based on meaningful parts of the input. While this method results in interpretable classifications, it often learns to classify from spurious or inconsistent parts of the image. Hoping to remedy this, we take inspiration from the recent developments in Reinforcement Learning with Human Feedback (RLHF) to fine-tune these prototypes. By collecting human annotations of prototypes quality via a 1-5 scale on the CUB-200-2011 dataset, we construct a reward model that learns human preferences and identify non-spurious prototypes. In place of a full RL update, we propose the Reweighed, Reselected, and Retrained Prototypical Part Network (R3-ProtoPNet), which adds an additional three steps to the ProtoPNet training loop. The first two steps are reward-based reweighting and reselection, which align prototypes with human feedback. The final step is retraining to realign the model's features with the updated prototypes. We find that R3-ProtoPNet improves the overall meaningfulness of the prototypes, and maintains or improves individual model performance. When multiple trained R3-ProtoPNets are incorporated into an ensemble, we find increases in both interpretability and predictive performance.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.