We introduce HallusionBench, a comprehensive benchmark designed for the evaluation of image-context reasoning. This benchmark presents significant challenges to advanced large visual-language models (LVLMs), such as GPT-4V(Vision) and LLaVA-1.5, by emphasizing nuanced understanding and interpretation of visual data. The benchmark comprises 346 images paired with 1129 questions, all meticulously crafted by human experts. We introduce a novel structure for these visual questions designed to establish control groups. This structure enables us to conduct a quantitative analysis of the models' response tendencies, logical consistency, and various failure modes. In our evaluation on HallusionBench, we benchmarked 13 different models, highlighting a 31.42% question-pair accuracy achieved by the state-of-the-art GPT-4V. Notably, all other evaluated models achieve accuracy below 16%. Moreover, our analysis not only highlights the observed failure modes, including language hallucination and visual illusion, but also deepens an understanding of these pitfalls. Our comprehensive case studies within HallusionBench shed light on the challenges of hallucination and illusion in LVLMs. Based on these insights, we suggest potential pathways for their future improvement. The benchmark and codebase can be accessed at //github.com/tianyi-lab/HallusionBench.
The HaliVer tool integrates deductive verification into the popular scheduling language Halide, used for image processing pipelines and array computations. HaliVer uses Vercors, a separation logic-based verifier, to verify the correctness of (1) the Halide algorithms and (2) the optimised parallel code produced by \halide when an optimisation schedule is applied to the algorithm. This allows proving complex, optimised code correct while reducing the effort to provide the required verification annotations. For both approaches, the same specification is used. We evaluated the tool on several optimised programs generated from characteristic Halide algorithms, using all but one of the essential scheduling directives available in Halide. Without annotation effort, Haliver proves memory safety in almost all programs. With annotations Haliver, additionally, proves functional correctness properties. We show that the approach is viable and reduces the manual annotation effort by an order of magnitude.
Recent advances in visual anomaly detection research have seen AUROC and AUPRO scores on public benchmark datasets such as MVTec and VisA converge towards perfect recall, giving the impression that these benchmarks are near-solved. However, high AUROC and AUPRO scores do not always reflect qualitative performance, which limits the validity of these metrics in real-world applications. We argue that the artificial ceiling imposed by the lack of an adequate evaluation metric restrains progression of the field, and it is crucial that we revisit the evaluation metrics used to rate our algorithms. In response, we introduce Per-IMage Overlap (PIMO), a novel metric that addresses the shortcomings of AUROC and AUPRO. PIMO retains the recall-based nature of the existing metrics but introduces two distinctions: the assignment of curves (and respective area under the curve) is per-image, and its X-axis relies solely on normal images. Measuring recall per image simplifies instance score indexing and is more robust to noisy annotations. As we show, it also accelerates computation and enables the usage of statistical tests to compare models. By imposing low tolerance for false positives on normal images, PIMO provides an enhanced model validation procedure and highlights performance variations across datasets. Our experiments demonstrate that PIMO offers practical advantages and nuanced performance insights that redefine anomaly detection benchmarks -- notably challenging the perception that MVTec AD and VisA datasets have been solved by contemporary models. Available on GitHub: //github.com/jpcbertoldo/aupimo.
Advanced change detection techniques primarily target image pairs of equal and high quality. However, variations in imaging conditions and platforms frequently lead to image pairs with distinct qualities: one image being high-quality, while the other being low-quality. These disparities in image quality present significant challenges for understanding image pairs semantically and extracting change features, ultimately resulting in a notable decline in performance. To tackle this challenge, we introduce an innovative training strategy grounded in knowledge distillation. The core idea revolves around leveraging task knowledge acquired from high-quality image pairs to guide the model's learning process when dealing with image pairs that exhibit differences in quality. Additionally, we develop a hierarchical correlation distillation approach (involving self-correlation, cross-correlation, and global correlation). This approach compels the student model to replicate the correlations inherent in the teacher model, rather than focusing solely on individual features. This ensures effective knowledge transfer while maintaining the student model's training flexibility.
To enhance the performance and effect of AR/VR applications and visual assistance and inspection systems, visual simultaneous localization and mapping (vSLAM) is a fundamental task in computer vision and robotics. However, traditional vSLAM systems are limited by the camera's narrow field-of-view, resulting in challenges such as sparse feature distribution and lack of dense depth information. To overcome these limitations, this paper proposes a 360ORB-SLAM system for panoramic images that combines with a depth completion network. The system extracts feature points from the panoramic image, utilizes a panoramic triangulation module to generate sparse depth information, and employs a depth completion network to obtain a dense panoramic depth map. Experimental results on our novel panoramic dataset constructed based on Carla demonstrate that the proposed method achieves superior scale accuracy compared to existing monocular SLAM methods and effectively addresses the challenges of feature association and scale ambiguity. The integration of the depth completion network enhances system stability and mitigates the impact of dynamic elements on SLAM performance.
Swin-Transformer has demonstrated remarkable success in computer vision by leveraging its hierarchical feature representation based on Transformer. In speech signals, emotional information is distributed across different scales of speech features, e.\,g., word, phrase, and utterance. Drawing above inspiration, this paper presents a hierarchical speech Transformer with shifted windows to aggregate multi-scale emotion features for speech emotion recognition (SER), called Speech Swin-Transformer. Specifically, we first divide the speech spectrogram into segment-level patches in the time domain, composed of multiple frame patches. These segment-level patches are then encoded using a stack of Swin blocks, in which a local window Transformer is utilized to explore local inter-frame emotional information across frame patches of each segment patch. After that, we also design a shifted window Transformer to compensate for patch correlations near the boundaries of segment patches. Finally, we employ a patch merging operation to aggregate segment-level emotional features for hierarchical speech representation by expanding the receptive field of Transformer from frame-level to segment-level. Experimental results demonstrate that our proposed Speech Swin-Transformer outperforms the state-of-the-art methods.
In underwater environments, variations in suspended particle concentration and turbidity cause severe image degradation, posing significant challenges to image enhancement (IE) and object detection (OD) tasks. Currently, in-air image enhancement and detection methods have made notable progress, but their application in underwater conditions is limited due to the complexity and variability of these environments. Fine-tuning in-air models saves high overhead and has more optional reference work than building an underwater model from scratch. To address these issues, we design a transfer plugin with multiple priors for converting in-air models to underwater applications, named IA2U. IA2U enables efficient application in underwater scenarios, thereby improving performance in Underwater IE and OD. IA2U integrates three types of underwater priors: the water type prior that characterizes the degree of image degradation, such as color and visibility; the degradation prior, focusing on differences in details and textures; and the sample prior, considering the environmental conditions at the time of capture and the characteristics of the photographed object. Utilizing a Transformer-like structure, IA2U employs these priors as query conditions and a joint task loss function to achieve hierarchical enhancement of task-level underwater image features, therefore considering the requirements of two different tasks, IE and OD. Experimental results show that IA2U combined with an in-air model can achieve superior performance in underwater image enhancement and object detection tasks. The code will be made publicly available.
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments. To solve this issue, previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features, limiting the generalization and adaptability of the model. Previous methods use the reference gradient that is constructed from original images and synthetic ground-truth images. This may cause the network performance to be influenced by some low-quality training data. Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space. This process improves image quality and avoids local optima. Moreover, we propose a Feature Restoration and Reconstruction module (FRR) based on a Channel Combination Inference (CCI) strategy and a Frequency Domain Smoothing module (FRS). These modules decouple other degradation features while reducing the impact of various types of noise on network performance. Experiments on multiple public datasets demonstrate the superiority of our method over existing state-of-the-art approaches, especially in achieving performance milestones: PSNR of 25.6dB and SSIM of 0.93 on the UIEB dataset. Its efficiency in terms of parameter size and inference time further attests to its broad practicality. The code will be made publicly available.
Medical visual question answering (VQA) is a challenging multimodal task, where Vision-Language Pre-training (VLP) models can effectively improve the generalization performance. However, most methods in the medical field treat VQA as an answer classification task which is difficult to transfer to practical application scenarios. Additionally, due to the privacy of medical images and the expensive annotation process, large-scale medical image-text pairs datasets for pretraining are severely lacking. In this paper, we propose a large-scale MultI-task Self-Supervised learning based framework (MISS) for medical VQA tasks. Unlike existing methods, we treat medical VQA as a generative task. We unify the text encoder and multimodal encoder and align image-text features through multi-task learning. Furthermore, we propose a Transfer-and-Caption method that extends the feature space of single-modal image datasets using large language models (LLMs), enabling those traditional medical vision field task data to be applied to VLP. Experiments show that our method achieves excellent results with fewer multimodal datasets and demonstrates the advantages of generative VQA models. The code and model weights will be released upon the paper's acceptance.
Vision Transformer (ViT) has performed remarkably in various computer vision tasks. Nonetheless, affected by the massive amount of parameters, ViT usually suffers from serious overfitting problems with a relatively limited number of training samples. In addition, ViT generally demands heavy computing resources, which limit its deployment on resource-constrained devices. As a type of model-compression method, model binarization is potentially a good choice to solve the above problems. Compared with the full-precision one, the model with the binarization method replaces complex tensor multiplication with simple bit-wise binary operations and represents full-precision model parameters and activations with only 1-bit ones, which potentially solves the problem of model size and computational complexity, respectively. In this paper, we investigate a binarized ViT model. Empirically, we observe that the existing binarization technology designed for Convolutional Neural Networks (CNN) cannot migrate well to a ViT's binarization task. We also find that the decline of the accuracy of the binary ViT model is mainly due to the information loss of the Attention module and the Value vector. Therefore, we propose a novel model binarization technique, called Group Superposition Binarization (GSB), to deal with these issues. Furthermore, in order to further improve the performance of the binarization model, we have investigated the gradient calculation procedure in the binarization process and derived more proper gradient calculation equations for GSB to reduce the influence of gradient mismatch. Then, the knowledge distillation technique is introduced to alleviate the performance degradation caused by model binarization. Analytically, model binarization can limit the parameters search space during parameter updates while training a model....
Recently, the application of deep learning to change detection (CD) has significantly progressed in remote sensing images. In recent years, CD tasks have mostly used architectures such as CNN and Transformer to identify these changes. However, these architectures have shortcomings in representing boundary details and are prone to false alarms and missed detections under complex lighting and weather conditions. For that, we propose a new network, Siamese Meets Diffusion Network (SMDNet). This network combines the Siam-U2Net Feature Differential Encoder (SU-FDE) and the denoising diffusion implicit model to improve the accuracy of image edge change detection and enhance the model's robustness under environmental changes. First, we propose an innovative SU-FDE module that utilizes shared weight features to capture differences between time series images and identify similarities between features to enhance edge detail detection. Furthermore, we add an attention mechanism to identify key coarse features to improve the model's sensitivity and accuracy. Finally, the diffusion model of progressive sampling is used to fuse key coarse features, and the noise reduction ability of the diffusion model and the advantages of capturing the probability distribution of image data are used to enhance the adaptability of the model in different environments. Our method's combination of feature extraction and diffusion models demonstrates effectiveness in change detection in remote sensing images. The performance evaluation of SMDNet on LEVIR-CD, DSIFN-CD, and CDD datasets yields validated F1 scores of 90.99%, 88.40%, and 88.47%, respectively. This substantiates the advanced capabilities of our model in accurately identifying variations and intricate details.