亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

GossipSub is a new peer-to-peer communication protocol designed to counter attacks from misbehaving peers by controlling what information is sent and to whom, via a score function computed by each peer that captures positive and negative behaviors of its neighbors. The score function depends on several parameters (weights, caps, thresholds) that can be configured by applications using GossipSub. The specification for GossipSub is written in English and its resilience to attacks from misbehaving peers is supported empirically by emulation testing using an implementation in Golang. In this work we take a foundational approach to understanding the resilience of GossipSub to attacks from misbehaving peers. We build the first formal model of GossipSub, using the ACL2s theorem prover. Our model is officially endorsed by the GossipSub developers. It can simulate GossipSub networks of arbitrary size and topology, with arbitrarily configured peers, and can be used to prove and disprove theorems about the protocol. We formalize fundamental security properties stating that the score function is fair, penalizes bad behavior, and rewards good behavior. We prove that the score function is always fair, but can be configured in ways that either penalize good behavior or ignore bad behavior. Using our model, we run GossipSub with the specific configurations for two popular real-world applications: the FileCoin and Eth2.0 blockchains. We show that all properties hold for FileCoin. However, given any Eth2.0 network (of any topology and size) with any number of potentially misbehaving peers, we can synthesize attacks where these peers are able to continuously misbehave by never forwarding topic messages, while maintaining positive scores so that they are never pruned from the network by GossipSub.

相關內容

We describe how hierarchical concepts can be represented in three types of layered neural networks. The aim is to support recognition of the concepts when partial information about the concepts is presented, and also when some of the neurons in the network might fail. Our failure model involves initial random failures. The three types of networks are: feed-forward networks with high connectivity, feed-forward networks with low connectivity, and layered networks with low connectivity and with both forward edges and "lateral" edges within layers. In order to achieve fault-tolerance, the representations all use multiple representative neurons for each concept. We show how recognition can work in all three of these settings, and quantify how the probability of correct recognition depends on several parameters, including the number of representatives and the neuron failure probability. We also discuss how these representations might be learned, in all three types of networks. For the feed-forward networks, the learning algorithms are similar to ones used in [4], whereas for networks with lateral edges, the algorithms are generally inspired by work on the assembly calculus [3, 6, 7].

The Self-Sovereign Identity (SSI) is a decentralized paradigm enabling full control over the data used to build and prove the identity. In Internet of Things networks with security requirements, the Self-Sovereign Identity can play a key role and bring benefits with respect to centralized identity solutions. The challenge is to make the SSI compatible with resource-constraint IoT networks. In line with this objective, the paper proposes and discusses an alternative (mutual) authentication process for IoT nodes under the same administration domain. The main idea is to combine the Decentralized IDentifier (DID)-based verification of private key ownership with the verification of a proof that the DID belongs to an evolving trusted set. The solution is built around the proof of membership notion. The paper analyzes two membership solutions, a novel solution designed by the Authors based on Merkle trees and a second one based on the adaptation of Boneh, Boyen and Shacham (BBS) group signature scheme. The paper concludes with a performance estimation and a comparative analysis.

The ability to derive useful information by asking clarifying questions (ACQ) is an important element of real life collaboration on reasoning tasks, such as question answering (QA). Existing natural language ACQ challenges, however, evaluate generations based on word overlap rather than the value of the information itself. Word overlap is often an inappropriate metric for question generation since many different questions could be useful in a given situation, and a single question can be phrased many different ways. Instead, we propose evaluating questions pragmatically based on the value of the information they retrieve. Here we present a definition and framework for natural language pragmatic asking of clarifying questions (PACQ), the problem of generating questions that result in answers useful for a reasoning task. We also present fact-level masking (FLM), a procedure for converting natural language datasets into self-supervised PACQ datasets by omitting particular critical facts. Finally, we generate a PACQ dataset from the HotpotQA dataset using FLM and evaluate several zero-shot language models on it. Our experiments show that current zero-shot models struggle to ask questions that retrieve useful information, as compared to human annotators. These results demonstrate an opportunity to use FLM datasets and the PACQ framework to objectively evaluate and improve question generation and other language models.

Owing to the promising ability of saving hardware cost and spectrum resources, integrated sensing and communication (ISAC) is regarded as a revolutionary technology for future sixth-generation (6G) networks. The mono-static ISAC systems considered in most of existing works can only achieve limited sensing performance due to the single observation angle and easily blocked transmission links, which motivates researchers to investigate cooperative ISAC networks. In order to further improve the degrees of freedom (DoFs) of cooperative ISAC networks, the transmitter-receiver selection, i.e., base station (BS) mode selection problem, is meaningful to be studied. However, to our best knowledge, this crucial problem has not been extensively studied in existing works. In this paper, we consider the joint BS mode selection, transmit beamforming, and receive filter designs for cooperative cell-free ISAC networks, where multi-BSs cooperatively serve communication users and detect targets. An efficient joint beamforming design algorithm and three different heuristic BS mode selection methods are proposed to solve the non-convex NP-hard problem. Simulation results demonstrates the advantages of cooperative ISAC networks, the importance of BS mode selection, and the effectiveness of proposed algorithms.

The lack of an accessible and effective system for blind individuals to create handwritten signatures presents a significant barrier to their independence and full participation in various aspects of life. This research introduces the Tactile Signature System, a groundbreaking approach that empowers individuals with visual impairments to form their unique handwritten signatures. Key features of the system include: Personalized customization: Through tactile interaction and voice algorithmic guidance, individuals create signatures reflecting their preferences and natural writing style. Real-time feedback: AI-powered voice prompts and analysis ensure accuracy and consistency in signature formation. Accessibility: Installation in local service centers provides a secure and supervised environment for signature creation. The system's impact reaches beyond the individual level: Promotes inclusivity and independence: Blind individuals can engage in legal and financial transactions without relying on others. Empowers and fosters equal opportunities: Participation in education, employment, and civic engagement becomes more accessible. Aligns with international conventions: Upholds the right of persons with disabilities to participate fully in society. The Tactile Signature System represents a significant step towards an inclusive and accessible future for individuals with visual impairments.

Triangle counting in networks under LDP (Local Differential Privacy) is a fundamental task for analyzing connection patterns or calculating a clustering coefficient while strongly protecting sensitive friendships from a central server. In particular, a recent study proposes an algorithm for this task that uses two rounds of interaction between users and the server to significantly reduce estimation error. However, this algorithm suffers from a prohibitively high communication cost due to a large noisy graph each user needs to download. In this work, we propose triangle counting algorithms under LDP with a small estimation error and communication cost. We first propose two-rounds algorithms consisting of edge sampling and carefully selecting edges each user downloads so that the estimation error is small. Then we propose a double clipping technique, which clips the number of edges and then the number of noisy triangles, to significantly reduce the sensitivity of each user's query. Through comprehensive evaluation, we show that our algorithms dramatically reduce the communication cost of the existing algorithm, e.g., from 6 hours to 8 seconds or less at a 20 Mbps download rate, while keeping a small estimation error.

We propose a data-driven approach for propagating uncertainty in stochastic power grid simulations and apply it to the estimation of transmission line failure probabilities. A reduced-order equation governing the evolution of the observed line energy probability density function is derived from the Fokker--Planck equation of the full-order continuous Markov process. Our method consists of estimates produced by numerically integrating this reduced equation. Numerical experiments for scalar- and vector-valued energy functions are conducted using the classical multimachine model under spatiotemporally correlated noise perturbation. The method demonstrates a more sample-efficient approach for computing probabilities of tail events when compared with kernel density estimation. Moreover, it produces vastly more accurate estimates of joint event occurrence when compared with independent models.

Quantitative technology forecasting uses quantitative methods to understand and project technological changes. It is a broad field encompassing many different techniques and has been applied to a vast range of technologies. A widely used approach in this field is trend extrapolation. Based on the publications available to us, there has been little or no attempt made to systematically review the empirical evidence on quantitative trend extrapolation techniques. This study attempts to close this gap by conducting a systematic review of technology forecasting literature addressing the application of quantitative trend extrapolation techniques. We identified 25 studies relevant to the objective of this research and classified the techniques used in the studies into different categories, among which growth curves and time series methods were shown to remain popular over the past decade, while newer methods, such as machine learning-based hybrid models, have emerged in recent years. As more effort and evidence are needed to determine if hybrid models are superior to traditional methods, we expect to see a growing trend in the development and application of hybrid models to technology forecasting.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司