亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of skewness is common among clinical trials and survival data which has being the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as probability density function, cumulative density function, reliability rate, hazard rate, reverse hazard rate, moment generating functions, likelihood functions, skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood; goodness of fit and model selection criteria including Anderson Darling (AD), CramerVon Misses (CVM), Kolmogorov Smirnov (KS), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Consistent Akaike Information Criterion (CAIC) are employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the proposed distribution performs better with better representation of the States in Nigeria COVID-19 death cases data than other competing models.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 過擬合 · MoDELS · 最大后驗估計 · 最大后驗 ·
2021 年 11 月 6 日

The recursive and hierarchical structure of full rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. In most of these cases, the full rooted tree is not a random variable; as such, model selection to avoid overfitting becomes problematic. A method to solve this problem is to assume a prior distribution on the full rooted trees. This enables overfitting to be avoided based on the Bayes decision theory. For example, by assigning a low prior probability to a complex model, the maximum a posteriori estimator prevents overfitting. Furthermore, overfitting can be avoided by averaging all the models weighted by their posteriors. In this paper, we propose a probability distribution on a set of full rooted trees. Its parametric representation is suitable for calculating the properties of our distribution using recursive functions, such as the mode, expectation, and posterior distribution. Although such distributions have been proposed in previous studies, they are only applicable to specific applications. Therefore, we extract their mathematically essential components and derive new generalized methods to calculate the expectation, posterior distribution, etc.

We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We utilize posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.

Coreset of a given dataset and loss function is usually a small weighed set that approximates this loss for every query from a given set of queries. Coresets have shown to be very useful in many applications. However, coresets construction is done in a problem dependent manner and it could take years to design and prove the correctness of a coreset for a specific family of queries. This could limit coresets use in practical applications. Moreover, small coresets provably do not exist for many problems. To address these limitations, we propose a generic, learning-based algorithm for construction of coresets. Our approach offers a new definition of coreset, which is a natural relaxation of the standard definition and aims at approximating the \emph{average} loss of the original data over the queries. This allows us to use a learning paradigm to compute a small coreset of a given set of inputs with respect to a given loss function using a training set of queries. We derive formal guarantees for the proposed approach. Experimental evaluation on deep networks and classic machine learning problems show that our learned coresets yield comparable or even better results than the existing algorithms with worst-case theoretical guarantees (that may be too pessimistic in practice). Furthermore, our approach applied to deep network pruning provides the first coreset for a full deep network, i.e., compresses all the network at once, and not layer by layer or similar divide-and-conquer methods.

Joint species distribution models (JSDM) are among the most important statistical tools in community ecology. However, existing JSDMs cannot model mutual exclusion between species. We tackle this deficiency by developing a novel hierarchical JSDM with Dirichlet-Multinomial observation process for mutually exclusive species groups. We apply non-stationary multivariate Gaussian processes to describe species niche preferences and conduct Bayesian inference using Markov chain Monte Carlo. We propose decision theoretic model comparison and validation methods to assess the goodness of the proposed model and its alternatives in a case study on modeling vegetation cover in a boreal peatland in Finland. Our results show that ignoring the interspecific interactions and competition significantly reduces models predictive performance and through that leads to biased estimates for total cover of individual species and over all species combined. Models relative predictive performance also depends on the predictive task highlighting that model comparison and assessment method should resemble the true predictive task. Our results also demonstrate that the proposed joint species distribution model can be used to simultaneously infer interspecific correlations in niche preference as well as mutual competition for space and through that provide novel insight into ecological research.

Personalized recommender systems are playing an increasingly important role as more content and services become available and users struggle to identify what might interest them. Although matrix factorization and deep learning based methods have proved effective in user preference modeling, they violate the triangle inequality and fail to capture fine-grained preference information. To tackle this, we develop a distance-based recommendation model with several novel aspects: (i) each user and item are parameterized by Gaussian distributions to capture the learning uncertainties; (ii) an adaptive margin generation scheme is proposed to generate the margins regarding different training triplets; (iii) explicit user-user/item-item similarity modeling is incorporated in the objective function. The Wasserstein distance is employed to determine preferences because it obeys the triangle inequality and can measure the distance between probabilistic distributions. Via a comparison using five real-world datasets with state-of-the-art methods, the proposed model outperforms the best existing models by 4-22% in terms of recall@K on Top-K recommendation.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

Neural waveform models such as the WaveNet are used in many recent text-to-speech systems, but the original WaveNet is quite slow in waveform generation because of its autoregressive (AR) structure. Although faster non-AR models were recently reported, they may be prohibitively complicated due to the use of a distilling training method and the blend of other disparate training criteria. This study proposes a non-AR neural source-filter waveform model that can be directly trained using spectrum-based training criteria and the stochastic gradient descent method. Given the input acoustic features, the proposed model first uses a source module to generate a sine-based excitation signal and then uses a filter module to transform the excitation signal into the output speech waveform. Our experiments demonstrated that the proposed model generated waveforms at least 100 times faster than the AR WaveNet and the quality of its synthetic speech is close to that of speech generated by the AR WaveNet. Ablation test results showed that both the sine-wave excitation signal and the spectrum-based training criteria were essential to the performance of the proposed model.

This work focuses on combining nonparametric topic models with Auto-Encoding Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the topics are treated as trainable parameters and the document-specific topic proportions are obtained by a stick-breaking construction. The inference of iTM-VAE is modeled by neural networks such that it can be computed in a simple feed-forward manner. We also describe how to introduce a hyper-prior into iTM-VAE so as to model the uncertainty of the prior parameter. Actually, the hyper-prior technique is quite general and we show that it can be applied to other AEVB based models to alleviate the {\it collapse-to-prior} problem elegantly. Moreover, we also propose HiTM-VAE, where the document-specific topic distributions are generated in a hierarchical manner. HiTM-VAE is even more flexible and can generate topic distributions with better variability. Experimental results on 20News and Reuters RCV1-V2 datasets show that the proposed models outperform the state-of-the-art baselines significantly. The advantages of the hyper-prior technique and the hierarchical model construction are also confirmed by experiments.

Topic models have been widely explored as probabilistic generative models of documents. Traditional inference methods have sought closed-form derivations for updating the models, however as the expressiveness of these models grows, so does the difficulty of performing fast and accurate inference over their parameters. This paper presents alternative neural approaches to topic modelling by providing parameterisable distributions over topics which permit training by backpropagation in the framework of neural variational inference. In addition, with the help of a stick-breaking construction, we propose a recurrent network that is able to discover a notionally unbounded number of topics, analogous to Bayesian non-parametric topic models. Experimental results on the MXM Song Lyrics, 20NewsGroups and Reuters News datasets demonstrate the effectiveness and efficiency of these neural topic models.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司