亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recursive and hierarchical structure of full rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. In most of these cases, the full rooted tree is not a random variable; as such, model selection to avoid overfitting becomes problematic. A method to solve this problem is to assume a prior distribution on the full rooted trees. This enables overfitting to be avoided based on the Bayes decision theory. For example, by assigning a low prior probability to a complex model, the maximum a posteriori estimator prevents overfitting. Furthermore, overfitting can be avoided by averaging all the models weighted by their posteriors. In this paper, we propose a probability distribution on a set of full rooted trees. Its parametric representation is suitable for calculating the properties of our distribution using recursive functions, such as the mode, expectation, and posterior distribution. Although such distributions have been proposed in previous studies, they are only applicable to specific applications. Therefore, we extract their mathematically essential components and derive new generalized methods to calculate the expectation, posterior distribution, etc.

相關內容

We examine a family of discrete probability distributions that describes the "spillage number" in the extended balls-in-bins model. The spillage number is defined as the number of balls that occupy their bins minus the total number of occupied bins. This probability distribution can be characterised as a normed version of the expansion of the noncentral Stirling numbers of the second kind in terms of the central Stirling numbers of the second kind. Alternatively it can be derived in a natural way from the extended balls-in-bins model. We derive the generating functions for this distribution and important moments of the distribution. We also derive an algorithm for recursive computation of the mass values for the distribution. Finally, we examine the asymptotic behaviour of the spillage distribution and the performance of an approximation to the distribution.

In this paper, we present two variations of an algorithm for signal reconstruction from one-bit or two-bit noisy observations of the discrete Fourier transform (DFT). The one-bit observations of the DFT correspond to the sign of its real part, whereas, the two-bit observations of the DFT correspond to the signs of both the real and imaginary parts of the DFT. We focus on images for analysis and simulations, thus using the sign of the 2D-DFT. This choice of the class of signals is inspired by previous works on this problem. For our algorithm, we show that the expected mean squared error (MSE) in signal reconstruction is asymptotically proportional to the inverse of the sampling rate. The samples are affected by additive zero-mean noise of known distribution. We solve this signal estimation problem by designing an algorithm that uses contraction mapping, based on the Banach fixed point theorem. Numerical tests with four benchmark images are provided to show the effectiveness of our algorithm. Various metrics for image reconstruction quality assessment such as PSNR, SSIM, ESSIM, and MS-SSIM are employed. On all four benchmark images, our algorithm outperforms the state-of-the-art in all of these metrics by a significant margin.

Ordinal cumulative probability models (CPMs) -- also known as cumulative link models -- such as the proportional odds regression model are typically used for discrete ordered outcomes, but can accommodate both continuous and mixed discrete/continuous outcomes since these are also ordered. Recent papers describe ordinal CPMs in this setting using non-parametric maximum likelihood estimation. We formulate a Bayesian CPM for continuous or mixed outcome data. Bayesian CPMs inherit many of the benefits of frequentist CPMs and have advantages with regard to interpretation, flexibility, and exact inference (within simulation error) for parameters and functions of parameters. We explore characteristics of the Bayesian CPM through simulations and a case study using HIV biomarker data. In addition, we provide the package 'bayesCPM' which implements Bayesian CPM models using the R interface to the Stan probabilistic programing language. The Bayesian CPM for continuous outcomes can be implemented with only minor modifications to the prior specification and, despite some limitations, has generally good statistical performance with moderate or large sample sizes.

Machine learning methods such as deep neural networks (DNNs), despite their success across different domains, are known to often generate incorrect predictions with high confidence on inputs outside their training distribution. The deployment of DNNs in safety-critical domains requires detection of out-of-distribution (OOD) data so that DNNs can abstain from making predictions on those. A number of methods have been recently developed for OOD detection, but there is still room for improvement. We propose the new method iDECODe, leveraging in-distribution equivariance for conformal OOD detection. It relies on a novel base non-conformity measure and a new aggregation method, used in the inductive conformal anomaly detection framework, thereby guaranteeing a bounded false detection rate. We demonstrate the efficacy of iDECODe by experiments on image and audio datasets, obtaining state-of-the-art results. We also show that iDECODe can detect adversarial examples.

Markov chains with variable length are useful parsimonious stochastic models able to generate most stationary sequence of discrete symbols. The idea is to identify the suffixes of the past, called contexts, that are relevant to predict the future symbol. Sometimes a single state is a context, and looking at the past and finding this specific state makes the further past irrelevant. States with such property are called renewal states and they can be used to split the chain into independent and identically distributed blocks. In order to identify renewal states for chains with variable length, we propose the use of Intrinsic Bayes Factor to evaluate the hypothesis that some particular state is a renewal state. In this case, the difficulty lies in integrating the marginal posterior distribution for the random context trees for general prior distribution on the space of context trees, with Dirichlet prior for the transition probabilities, and Monte Carlo methods are applied. To show the strength of our method, we analyzed artificial datasets generated from different binary models models and one example coming from the field of Linguistics.

A smooth and strictly convex function on an open convex domain induces both (1) a Hessian manifold with respect to the standard flat Euclidean connection, and (2) a dually flat space of information geometry. We first review these constructions and illustrate how to instantiate them for (a) full regular exponential families from their partition functions, (b) regular homogeneous cones from their characteristic functions, and (c) mixture families from their Shannon negentropy functions. Although these structures can be explicitly built for many common examples of the first two classes, the differential entropy of a continuous statistical mixture with distinct prescribed density components sharing the same support is hitherto not known in closed form, hence forcing implementations of mixture family manifolds in practice using Monte Carlo sampling. In this work, we report a notable exception: The family of mixtures defined as the convex combination of two prescribed and distinct Cauchy distributions. As a byproduct, we report closed-form formula for the Jensen-Shannon divergence between two mixtures of two prescribed Cauchy components.

Surrogate modeling based on Gaussian processes (GPs) has received increasing attention in the analysis of complex problems in science and engineering. Despite extensive studies on GP modeling, the developments for functional inputs are scarce. Motivated by an inverse scattering problem in which functional inputs representing the support and material properties of the scatterer are involved in the partial differential equations, a new class of kernel functions for functional inputs is introduced for GPs. Based on the proposed GP models, the asymptotic convergence properties of the resulting mean squared prediction errors are derived and the finite sample performance is demonstrated by numerical examples. In the application to inverse scattering, a surrogate model is constructed with functional inputs, which is crucial to recover the reflective index of an inhomogeneous isotropic scattering region of interest for a given far-field pattern.

Energy research is of crucial public importance but the use of computer science technologies like automatic text processing and data management for the energy domain is still rare. Employing these technologies in the energy domain will be a significant contribution to the interdisciplinary topic of ``energy informatics", just like the related progress within the interdisciplinary area of ``bioinformatics". In this paper, we present the architecture of a Web-based semantic system called EneMonIE (Energy Monitoring through Information Extraction) for monitoring up-to-date energy trends through the use of automatic, continuous, and guided information extraction from diverse types of media available on the Web. The types of media handled by the system will include online news articles, social media texts, online news videos, and open-access scholarly papers and technical reports as well as various numeric energy data made publicly available by energy organizations. The system will utilize and contribute to the energy-related ontologies and its ultimate form will comprise components for (i) text categorization, (ii) named entity recognition, (iii) temporal expression extraction, (iv) event extraction, (v) social network construction, (vi) sentiment analysis, (vii) information fusion and summarization, (viii) media interlinking, and (ix) Web-based information retrieval and visualization. Wits its diverse data sources, automatic text processing capabilities, and presentation facilities open for public use; EneMonIE will be an important source of distilled and concise information for decision-makers including energy generation, transmission, and distribution system operators, energy research centres, related investors and entrepreneurs as well as for academicians, students, other individuals interested in the pace of energy events and technologies.

This paper introduces a new approach to inferring the second order properties of a multivariate log Gaussian Cox process (LGCP) with a complex intensity function. We assume a semi-parametric model for the multivariate intensity function containing an unspecified complex factor common to all types of points. Given this model we exploit the availability of several types of points to construct a second-order conditional composite likelihood to infer the pair correlation and cross pair correlation functions of the LGCP. Crucially this likelihood does not depend on the unspecified part of the intensity function. We also introduce a cross validation method for model selection and an algorithm for regularized inference that can be used to obtain sparse models for cross pair correlation functions. The methodology is applied to simulated data as well as data examples from microscopy and criminology. This shows how the new approach outperforms existing alternatives where the intensity functions are estimated non-parametrically.

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.

北京阿比特科技有限公司