Energy research is of crucial public importance but the use of computer science technologies like automatic text processing and data management for the energy domain is still rare. Employing these technologies in the energy domain will be a significant contribution to the interdisciplinary topic of ``energy informatics", just like the related progress within the interdisciplinary area of ``bioinformatics". In this paper, we present the architecture of a Web-based semantic system called EneMonIE (Energy Monitoring through Information Extraction) for monitoring up-to-date energy trends through the use of automatic, continuous, and guided information extraction from diverse types of media available on the Web. The types of media handled by the system will include online news articles, social media texts, online news videos, and open-access scholarly papers and technical reports as well as various numeric energy data made publicly available by energy organizations. The system will utilize and contribute to the energy-related ontologies and its ultimate form will comprise components for (i) text categorization, (ii) named entity recognition, (iii) temporal expression extraction, (iv) event extraction, (v) social network construction, (vi) sentiment analysis, (vii) information fusion and summarization, (viii) media interlinking, and (ix) Web-based information retrieval and visualization. Wits its diverse data sources, automatic text processing capabilities, and presentation facilities open for public use; EneMonIE will be an important source of distilled and concise information for decision-makers including energy generation, transmission, and distribution system operators, energy research centres, related investors and entrepreneurs as well as for academicians, students, other individuals interested in the pace of energy events and technologies.
The advancements in peer-to-peer wireless power transfer (P2P-WPT) have empowered the portable and mobile devices to wirelessly replenish their battery by directly interacting with other nearby devices. The existing works unrealistically assume the users to exchange energy with any of the users and at every such opportunity. However, due to the users' mobility, the inter-node meetings in such opportunistic mobile networks vary, and P2P energy exchange in such scenarios remains uncertain. Additionally, the social interests and interactions of the users influence their mobility as well as the energy exchange between them. The existing P2P-WPT methods did not consider the joint problem for energy exchange due to user's inevitable mobility, and the influence of sociality on the latter. As a result of computing with imprecise information, the energy balance achieved by these works at a slower rate as well as impaired by energy loss for the crowd. Motivated by this problem scenario, in this work, we present a wireless crowd charging method, namely MoSaBa, which leverages mobility prediction and social information for improved energy balancing. MoSaBa incorporates two dimensions of social information, namely social context and social relationships, as additional features for predicting contact opportunities. In this method, we explore the different pairs of peers such that the energy balancing is achieved at a faster rate as well as the energy balance quality improves in terms of maintaining low energy loss for the crowd. We justify the peer selection method in MoSaBa by detailed performance evaluation. Compared to the existing state-of-the-art, the proposed method achieves better performance trade-offs between energy-efficiency, energy balance quality and convergence time.
Thanks to the ubiquitousness of Wi-Fi access points and devices, Wi-Fi sensing enables transformative applications in remote health care, security, and surveillance. Existing work has explored the usage of machine learning on channel state information (CSI) computed from Wi-Fi packets to classify events of interest. However, most of these algorithms require a significant amount of data collection, as well as extensive computational power for additional CSI feature extraction. Moreover, the majority of these models suffer from poor accuracy when tested in a new/untrained environment. In this paper, we propose ReWiS, a novel framework for robust and environment-independent Wi-Fi sensing. The key innovation of ReWiS is to leverage few-shot learning (FSL) as the inference engine, which (i) reduces the need for extensive data collection and application-specific feature extraction; (ii) can rapidly generalize to new tasks by leveraging only a few new samples. We prototype ReWiS using off-the-shelf Wi-Fi equipment and showcase its performance by considering a compelling use case of human activity recognition. Thus, we perform an extensive data collection campaign in three different propagation environments with two human subjects. We evaluate the impact of each diversity component on the performance and compare ReWiS with a traditional convolutional neural network (CNN) approach. Experimental results show that ReWiS improves the performance by about 40% with respect to existing single-antenna low-resolution approaches. Moreover, when compared to a CNN-based approach, ReWiS shows a 35% more accuracy and less than 10% drop in accuracy when tested in different environments, while the CNN drops by more than 45%.
Gaussian Process (GP) emulators are widely used to approximate complex computer model behaviour across the input space. Motivated by the problem of coupling computer models, recently progress has been made in the theory of the analysis of networks of connected GP emulators. In this paper, we combine these recent methodological advances with classical state-space models to construct a Bayesian decision support system. This approach gives a coherent probability model that produces predictions with the measure of uncertainty in terms of two first moments and enables the propagation of uncertainty from individual decision components. This methodology is used to produce a decision support tool for a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. In particular, we demonstrate how to couple information from an energy model, a heating demand model, and gas and electricity price time-series to quantitatively assess the impact on operational costs of various policy choices and changes in the energy market.
Automatic text summarization has experienced substantial progress in recent years. With this progress, the question has arisen whether the types of summaries that are typically generated by automatic summarization models align with users' needs. Ter Hoeve et al (2020) answer this question negatively. Amongst others, they recommend focusing on generating summaries with more graphical elements. This is in line with what we know from the psycholinguistics literature about how humans process text. Motivated from these two angles, we propose a new task: summarization with graphical elements, and we verify that these summaries are helpful for a critical mass of people. We collect a high quality human labeled dataset to support research into the task. We present a number of baseline methods that show that the task is interesting and challenging. Hence, with this work we hope to inspire a new line of research within the automatic summarization community.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
In recent years, disinformation including fake news, has became a global phenomenon due to its explosive growth, particularly on social media. The wide spread of disinformation and fake news can cause detrimental societal effects. Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation. The goal of this chapter is to pave the way for appreciating the challenges and advancements via: (1) introducing the types of information disorder on social media and examine their differences and connections; (2) describing important and emerging tasks to combat disinformation for characterization, detection and attribution; and (3) discussing a weak supervision approach to detect disinformation with limited labeled data. We then provide an overview of the chapters in this book that represent the recent advancements in three related parts: (1) user engagements in the dissemination of information disorder; (2) techniques on detecting and mitigating disinformation; and (3) trending issues such as ethics, blockchain, clickbaits, etc. We hope this book to be a convenient entry point for researchers, practitioners, and students to understand the problems and challenges, learn state-of-the-art solutions for their specific needs, and quickly identify new research problems in their domains.