亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compared to on-policy policy gradient techniques, off-policy model-free deep reinforcement learning (RL) that uses previously gathered data can improve sampling efficiency. However, off-policy learning becomes challenging when the discrepancy between the distributions of the policy of interest and the policies that collected the data increases. Although the well-studied importance sampling and off-policy policy gradient techniques were proposed to compensate for this discrepancy, they usually require a collection of long trajectories that increases the computational complexity and induce additional problems such as vanishing/exploding gradients or discarding many useful experiences. Moreover, their generalization to continuous action domains is strictly limited as they require action probabilities, which is unsuitable for deterministic policies. To overcome these limitations, we introduce a novel policy similarity measure to mitigate the effects of such discrepancy. Our method offers an adequate single-step off-policy correction without any probability estimates, and theoretical results show that it can achieve a contraction mapping with a fixed unique point, which allows "safe" off-policy learning. An extensive set of empirical results indicate that our algorithm substantially improves the state-of-the-art and attains higher returns in fewer steps than the competing methods by efficiently scheduling the learning rate in Q-learning and policy optimization.

相關內容

Practitioners are often left tuning Metropolis-Hastings algorithms by trial and error or using optimal scaling guidelines to avoid poor empirical performance. We develop lower bounds on the convergence rates of geometrically ergodic accept-reject-based Markov chains (i.e. Metropolis-Hastings, non-reversible Metropolis-Hastings) to study their computational complexity. If the target density concentrates with a parameter $n$ (e.g. Bayesian posterior concentration, Laplace approximations), we show the convergence rate can tend to $1$ exponentially fast if the tuning parameters do not depend carefully on $n$. We show this is the case for random-walk Metropolis in Bayesian logistic regression with Zellner's g-prior when the dimension and sample size $d/n \to \gamma \in (0, 1)$. We focus on more general target densities using a special class of Metropolis-Hastings algorithms with a Gaussian proposal (e.g. random walk and Metropolis-adjusted Langevin algorithms) where we give more general conditions. An application to flat prior Bayesian logistic regression as $n \to \infty$ is studied. We also develop lower bounds in the Wasserstein distances which have become popular in the convergence analysis of high-dimensional MCMC algorithms with similar conclusions.

In order to avoid conventional controlling methods which created obstacles due to the complexity of systems and intense demand on data density, developing modern and more efficient control methods are required. In this way, reinforcement learning off-policy and model-free algorithms help to avoid working with complex models. In terms of speed and accuracy, they become prominent methods because the algorithms use their past experience to learn the optimal policies. In this study, three reinforcement learning algorithms; DDPG, TD3 and SAC have been used to train Fetch robotic manipulator for four different tasks in MuJoCo simulation environment. All of these algorithms are off-policy and able to achieve their desired target by optimizing both policy and value functions. In the current study, the efficiency and the speed of these three algorithms are analyzed in a controlled environment.

We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.

In many real-world problems, the learning agent needs to learn a problem's abstractions and solution simultaneously. However, most such abstractions need to be designed and refined by hand for different problems and domains of application. This paper presents a novel top-down approach for constructing state abstractions while carrying out reinforcement learning. Starting with state variables and a simulator, it presents a novel domain-independent approach for dynamically computing an abstraction based on the dispersion of Q-values in abstract states as the agent continues acting and learning. Extensive empirical evaluation on multiple domains and problems shows that this approach automatically learns abstractions that are finely-tuned to the problem, yield powerful sample efficiency, and result in the RL agent significantly outperforming existing approaches.

In the field of autonomous robots, reinforcement learning (RL) is an increasingly used method to solve the task of dynamic obstacle avoidance for mobile robots, autonomous ships, and drones. A common practice to train those agents is to use a training environment with random initialization of agent and obstacles. Such approaches might suffer from a low coverage of high-risk scenarios in training, leading to impaired final performance of obstacle avoidance. This paper proposes a general training environment where we gain control over the difficulty of the obstacle avoidance task by using short training episodes and assessing the difficulty by two metrics: The number of obstacles and a collision risk metric. We found that shifting the training towards a greater task difficulty can massively increase the final performance. A baseline agent, using a traditional training environment based on random initialization of agent and obstacles and longer training episodes, leads to a significantly weaker performance. To prove the generalizability of the proposed approach, we designed two realistic use cases: A mobile robot and a maritime ship under the threat of approaching obstacles. In both applications, the previous results can be confirmed, which emphasizes the general usability of the proposed approach, detached from a specific application context and independent of the agent's dynamics. We further added Gaussian noise to the sensor signals, resulting in only a marginal degradation of performance and thus indicating solid robustness of the trained agent.

It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations. This motivates much of the recent theoretical study on linear MDPs. However, most approaches require a given representation under unrealistic assumptions about the normalization of the decomposition or introduce unresolved computational challenges in practice. Instead, we consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning via contrastive estimation. The framework also admits confidence-adjusted index algorithms, enabling an efficient and principled approach to incorporating optimism or pessimism in the face of uncertainty. To the best of our knowledge, this provides the first practical representation learning method for linear MDPs that achieves both strong theoretical guarantees and empirical performance. Theoretically, we prove that the proposed algorithm is sample efficient in both the online and offline settings. Empirically, we demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.

In off-policy reinforcement learning, a behaviour policy performs exploratory interactions with the environment to obtain state-action-reward samples which are then used to learn a target policy that optimises the expected return. This leads to a problem of off-policy evaluation, where one needs to evaluate the target policy from samples collected by the often unrelated behaviour policy. Importance sampling is a traditional statistical technique that is often applied to off-policy evaluation. While importance sampling estimators are unbiased, their variance increases exponentially with the horizon of the decision process due to computing the importance weight as a product of action probability ratios, yielding estimates with low accuracy for domains involving long-term planning. This paper proposes state-based importance sampling (SIS), which drops the action probability ratios of sub-trajectories with "neglible states" -- roughly speaking, those for which the chosen actions have no impact on the return estimate -- from the computation of the importance weight. Theoretical results show that this results in a reduction of the exponent in the variance upper bound as well as improving the mean squared error. An automated search algorithm based on covariance testing is proposed to identify a negligible state set which has minimal MSE when performing state-based importance sampling. Experiments are conducted on a lift domain, which include "lift states" where the action has no impact on the following state and reward. The results demonstrate that using the search algorithm, SIS yields reduced variance and improved accuracy compared to traditional importance sampling, per-decision importance sampling, and incremental importance sampling.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司