亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study ergodic properties of some Markov chains models in random environments when the random Markov kernels that define the dynamic satisfy some usual drift and small set conditions but with random coefficients. In particular, we adapt a standard coupling scheme used for getting geometric ergodic properties for homogeneous Markov chains to the random environment case and we prove the existence of a process of randomly invariant probability measures for such chains, in the spirit of the approach of Kifer for chains satisfying some Doeblin type conditions. We then deduce ergodic properties of such chains when the environment is itself ergodic. Our results complement and sharpen existing ones by providing quite weak and easily checkable assumptions on the random Markov kernels. As a by-product, we obtain a framework for studying some time series models with strictly exogenous covariates. We illustrate our results with autoregressive time series with functional coefficients and some threshold autoregressive processes.

相關內容

馬爾可夫鏈,因安德烈·馬爾可夫(A.A.Markov,1856-1922)得名,是指數學中具有馬爾可夫性質的離散事件隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當前以前的歷史狀態)對于預測將來(即當前以后的未來狀態)是無關的。 在馬爾可夫鏈的每一步,系統根據概率分布,可以從一個狀態變到另一個狀態,也可以保持當前狀態。狀態的改變叫做轉移,與不同的狀態改變相關的概率叫做轉移概率。隨機漫步就是馬爾可夫鏈的例子。隨機漫步中每一步的狀態是在圖形中的點,每一步可以移動到任何一個相鄰的點,在這里移動到每一個點的概率都是相同的(無論之前漫步路徑是如何的)。

We analyze the complexity of learning directed acyclic graphical models from observational data in general settings without specific distributional assumptions. Our approach is information-theoretic and uses a local Markov boundary search procedure in order to recursively construct ancestral sets in the underlying graphical model. Perhaps surprisingly, we show that for certain graph ensembles, a simple forward greedy search algorithm (i.e. without a backward pruning phase) suffices to learn the Markov boundary of each node. This substantially improves the sample complexity, which we show is at most polynomial in the number of nodes. This is then applied to learn the entire graph under a novel identifiability condition that generalizes existing conditions from the literature. As a matter of independent interest, we establish finite-sample guarantees for the problem of recovering Markov boundaries from data. Moreover, we apply our results to the special case of polytrees, for which the assumptions simplify, and provide explicit conditions under which polytrees are identifiable and learnable in polynomial time. We further illustrate the performance of the algorithm, which is easy to implement, in a simulation study. Our approach is general, works for discrete or continuous distributions without distributional assumptions, and as such sheds light on the minimal assumptions required to efficiently learn the structure of directed graphical models from data.

In this paper, we investigate the performance of two first-order optimization algorithms, obtained from forward Euler discretization of finite-time optimization flows. These flows are the rescaled-gradient flow (RGF) and the signed-gradient flow (SGF), and consist of non-Lipscthiz or discontinuous dynamical systems that converge locally in finite time to the minima of gradient-dominated functions. We propose an Euler discretization for these first-order finite-time flows, and provide convergence guarantees, in the deterministic and the stochastic setting. We then apply the proposed algorithms to academic examples, as well as deep neural networks training, where we empirically test their performances on the SVHN dataset. Our results show that our schemes demonstrate faster convergences against standard optimization alternatives.

We study the frontier between learnable and unlearnable hidden Markov models (HMMs). HMMs are flexible tools for clustering dependent data coming from unknown populations. The model parameters are known to be fully identifiable (up to label-switching) without any modeling assumption on the distributions of the populations as soon as the clusters are distinct and the hidden chain is ergodic with a full rank transition matrix. In the limit as any one of these conditions fails, it becomes impossible in general to identify parameters. For a chain with two hidden states we prove nonasymptotic minimax upper and lower bounds, matching up to constants, which exhibit thresholds at which the parameters become learnable. We also provide an upper bound on the relative entropy rate for parameters in a neighbourhood of the unlearnable region which may have interest in itself.

Expectiles define the only law-invariant, coherent and elicitable risk measure apart from the expectation. The popularity of expectile-based risk measures is steadily growing and their properties have been studied for independent data, but further results are needed to use extreme expectiles with dependent time series such as financial data. In this paper we establish a basis for inference on extreme expectiles and expectile-based marginal expected shortfall in a general $\beta$-mixing context that encompasses ARMA, ARCH and GARCH models with heavy-tailed innovations. Simulations and applications to financial returns show that the new estimators and confidence intervals greatly improve on existing ones when the data are dependent.

We consider a perimeter defense problem in a planar conical environment in which a single vehicle, having a finite capture radius, aims to defend a concentric perimeter from mobile intruders. The intruders are arbitrarily released at the circumference of the environment and move radially toward the perimeter with fixed speed. We present a competitive analysis approach to this problem by measuring the performance of multiple online algorithms for the vehicle against arbitrary inputs, relative to an optimal offline algorithm that has access to all future inputs. In particular, we first establish a necessary condition on the parameter space to guarantee finite competitiveness of any algorithm, and then characterize a parameter regime in which the competitive ratio is guaranteed to be at least 2 for any algorithm. We then design and analyze three online algorithms and characterize parameter regimes for which they have finite competitive ratios. Specifically, our first two algorithms are provably 1, and 2-competitive, respectively, whereas our third algorithm exhibits a finite competitive ratio that depends on the problem parameters. Finally, we provide numerous parameter space plots providing insights into the relative performance of our algorithms.

Most of the existing literature on supervised learning problems focuses on the case when the training data set is drawn from an i.i.d. sample. However, many practical supervised learning problems are characterized by temporal dependence and strong correlation between the marginals of the data-generating process, suggesting that the i.i.d. assumption is not always justified. This problem has been already considered in the context of Markov chains satisfying the Doeblin condition. This condition, among other things, implies that the chain is not singular in its behavior, i.e. it is irreducible. In this article, we focus on the case when the training data set is drawn from a not necessarily irreducible Markov chain. Under the assumption that the chain is uniformly ergodic with respect to the $\mathrm{L}^1$-Wasserstein distance, and certain regularity assumptions on the hypothesis class and the state space of the chain, we first obtain a uniform convergence result for the corresponding sample error, and then we conclude learnability of the approximate sample error minimization algorithm and find its generalization bounds. At the end, a relative uniform convergence result for the sample error is also discussed.

We study a novel setting in Online Markov Decision Processes (OMDPs) where the loss function is chosen by a non-oblivious strategic adversary who follows a no-external regret algorithm. In this setting, we first demonstrate that MDP-Expert, an existing algorithm that works well with oblivious adversaries can still apply and achieve a policy regret bound of $\mathcal{O}(\sqrt{T \log(L)}+\tau^2\sqrt{ T \log(|A|)})$ where $L$ is the size of adversary's pure strategy set and $|A|$ denotes the size of agent's action space. Considering real-world games where the support size of a NE is small, we further propose a new algorithm: MDP-Online Oracle Expert (MDP-OOE), that achieves a policy regret bound of $\mathcal{O}(\sqrt{T\log(L)}+\tau^2\sqrt{ T k \log(k)})$ where $k$ depends only on the support size of the NE. MDP-OOE leverages the key benefit of Double Oracle in game theory and thus can solve games with prohibitively large action space. Finally, to better understand the learning dynamics of no-regret methods, under the same setting of no-external regret adversary in OMDPs, we introduce an algorithm that achieves last-round convergence result to a NE. To our best knowledge, this is first work leading to the last iteration result in OMDPs.

In this paper, from a theoretical perspective, we study how powerful graph neural networks (GNNs) can be for learning approximation algorithms for combinatorial problems. To this end, we first establish a new class of GNNs that can solve strictly a wider variety of problems than existing GNNs. Then, we bridge the gap between GNN theory and the theory of distributed local algorithms to theoretically demonstrate that the most powerful GNN can learn approximation algorithms for the minimum dominating set problem and the minimum vertex cover problem with some approximation ratios and that no GNN can perform better than with these ratios. This paper is the first to elucidate approximation ratios of GNNs for combinatorial problems. Furthermore, we prove that adding coloring or weak-coloring to each node feature improves these approximation ratios. This indicates that preprocessing and feature engineering theoretically strengthen model capabilities.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司