Fully homomorphic encryption (FHE) is in the spotlight as a definitive solution for privacy, but the high computational overhead of FHE poses a challenge to its practical adoption. Although prior studies have attempted to design ASIC accelerators to mitigate the overhead, their designs require excessive amounts of chip resources (e.g., areas) to contain and process massive data for FHE operations. We propose CiFHER, a chiplet-based FHE accelerator with a resizable structure, to tackle the challenge with a cost-effective multi-chip module (MCM) design. First, we devise a flexible architecture of a chiplet core whose configuration can be adjusted to conform to the global organization of chiplets and design constraints. The distinctive feature of our core is a recomposable functional unit providing varying computational throughput for number-theoretic transform (NTT), the most dominant function in FHE. Then, we establish generalized data mapping methodologies to minimize the network overhead when organizing the chips into the MCM package in a tiled manner, which becomes a significant bottleneck due to the technology constraints of MCMs. Also, we analyze the effectiveness of various algorithms, including a novel limb duplication algorithm, on the MCM architecture. A detailed evaluation shows that a CiFHER package composed of 4 to 64 compact chiplets provides performance comparable to state-of-the-art monolithic ASIC FHE accelerators with significantly lower package-wide power consumption while reducing the area of a single core to as small as 4.28mm$^2$.
Searching in a denied environment is challenging for swarm robots as no assistance from GNSS, mapping, data sharing, and central processing is allowed. However, using olfactory and auditory signals to cooperate like animals could be an important way to improve the collaboration of swarm robots. In this paper, an Olfactory-Auditory augmented Bug algorithm (OA-Bug) is proposed for a swarm of autonomous robots to explore a denied environment. A simulation environment is built to measure the performance of OA-Bug. The coverage of the search task can reach 96.93% using OA-Bug, which is significantly improved compared with a similar algorithm, SGBA. Furthermore, experiments are conducted on real swarm robots to prove the validity of OA-Bug. Results show that OA-Bug can improve the performance of swarm robots in a denied environment.
Depth estimation provides an alternative approach for perceiving 3D information in autonomous driving. Monocular depth estimation, whether with single-frame or multi-frame inputs, has achieved significant success by learning various types of cues and specializing in either static or dynamic scenes. Recently, these cues fusion becomes an attractive topic, aiming to enable the combined cues to perform well in both types of scenes. However, adaptive cue fusion relies on attention mechanisms, where the quadratic complexity limits the granularity of cue representation. Additionally, explicit cue fusion depends on precise segmentation, which imposes a heavy burden on mask prediction. To address these issues, we propose the GSDC Transformer, an efficient and effective component for cue fusion in monocular multi-frame depth estimation. We utilize deformable attention to learn cue relationships at a fine scale, while sparse attention reduces computational requirements when granularity increases. To compensate for the precision drop in dynamic scenes, we represent scene attributes in the form of super tokens without relying on precise shapes. Within each super token attributed to dynamic scenes, we gather its relevant cues and learn local dense relationships to enhance cue fusion. Our method achieves state-of-the-art performance on the KITTI dataset with efficient fusion speed.
Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clipping, comparing parameter divergences among local updates. In this work, we propose a new stealthy and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a generative trigger function that can learn to manipulate the benign samples with an imperceptible flexible trigger pattern and simultaneously make the trigger pattern include the most significant hidden features of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable difference (the mapping between the trigger pattern and target label), we make our attack naturally stealthy. Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack compared to prior attacks on decentralized learning framework with eight well-studied defenses.
Recently, Locate-Then-Edit paradigm has emerged as one of the main approaches in changing factual knowledge stored in the Language models. However, there is a lack of research on whether present locating methods can pinpoint the exact parameters embedding the desired knowledge. Moreover, although many researchers have questioned the validity of locality hypothesis of factual knowledge, no method is provided to test the a hypothesis for more in-depth discussion and research. Therefore, we introduce KLoB, a benchmark examining three essential properties that a reliable knowledge locating method should satisfy. KLoB can serve as a benchmark for evaluating existing locating methods in language models, and can contributes a method to reassessing the validity of locality hypothesis of factual knowledge. Our is publicly available at \url{//github.com/juyiming/KLoB}.
Recent advancements in autonomous driving have relied on data-driven approaches, which are widely adopted but face challenges including dataset bias, overfitting, and uninterpretability. Drawing inspiration from the knowledge-driven nature of human driving, we explore the question of how to instill similar capabilities into autonomous driving systems and summarize a paradigm that integrates an interactive environment, a driver agent, as well as a memory component to address this question. Leveraging large language models with emergent abilities, we propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge and evolve continuously. Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability over reinforcement learning-based methods. Moreover, DiLu is able to directly acquire experiences from real-world datasets which highlights its potential to be deployed on practical autonomous driving systems. To the best of our knowledge, we are the first to instill knowledge-driven capability into autonomous driving systems from the perspective of how humans drive.
Current high-performance semantic segmentation models are purely data-driven sub-symbolic approaches and blind to the structured nature of the visual world. This is in stark contrast to human cognition which abstracts visual perceptions at multiple levels and conducts symbolic reasoning with such structured abstraction. To fill these fundamental gaps, we devise LOGICSEG, a holistic visual semantic parser that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge. In particular, the semantic concepts of interest are structured as a hierarchy, from which a set of constraints are derived for describing the symbolic relations and formalized as first-order logic rules. After fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training. During inference, logical constraints are packaged into an iterative process and injected into the network in a form of several matrix multiplications, so as to achieve hierarchy-coherent prediction with logic reasoning. These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models. Extensive experiments over four datasets with various segmentation models and backbones verify the effectiveness and generality of LOGICSEG. We believe this study opens a new avenue for visual semantic parsing.
Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs.
Freshness-aware computation offloading has garnered great attention recently in the edge computing arena, with the aim of promptly obtaining up-to-date information and minimizing the transmission of outdated data. However, most of the existing work assumes that wireless channels are reliable and neglect the dynamics and stochasticity thereof. In addition, varying priorities of offloading tasks along with heterogeneous computing units also pose significant challenges in effective task scheduling and resource allocation. To address these challenges, we cast the freshness-aware task offloading problem as a multi-priority optimization problem, considering the unreliability of wireless channels, the heterogeneity of edge servers, and prioritized users. Based on the nonlinear fractional programming and ADMM-Consensus method, we propose a joint resource allocation and task offloading algorithm to solve the original problem iteratively. To improve communication efficiency, we further devise a distributed asynchronous variant for the proposed algorithm. We rigorously analyze the performance and convergence of the proposed algorithms and conduct extensive simulations to corroborate their efficacy and superiority over the existing baselines.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.